Evaluaciones Estructurales de Aeronaves en Entornos con Datos Limitados: Un Método FE Validado
DOI:
https://doi.org/10.29019/enfoqueute.1080Palabras clave:
Análisis de elementos finitos, Integridad estructural, Modelo a escala reducida, Idealización estructural, Validación experimentalResumen
Los operadores de aeronaves a menudo modifican las configuraciones de las aeronaves, instalan nuevos equipos y modifican las estructuras de los aviones para acomodar estos equipos, lo que lleva a operaciones en envolventes de vuelo diferentes al perfil de diseño original. Estas modificaciones requieren evaluaciones estructurales de la estructura del avión, que normalmente requieren datos completos de diseño de la aeronave, que a menudo no están disponibles para los operadores. Este estudio tiene como objetivo desarrollar y validar un método práctico para el análisis de elementos finitos (FEA) de estructuras de aeronaves en ausencia de estos datos de diseño detallados. Centrándose en un estudio de caso que involucra el análisis estructural del ala de un avión, este estudio presenta suposiciones e idealizaciones utilizadas para desarrollar un modelo de elementos finitos (FE) 2.5D del ala. La fidelidad de este modelo se establece comparando los resultados del análisis FE con datos experimentales. Las métricas clave de validación incluyen fuerzas de reacción, distribución de carga en las uniones ala-fuselaje y deformación en puntos de referencia en el ala bajo carga de diseño. Se lleva a cabo una comparación entre el análisis EF y los resultados experimentales para corroborar la precisión de estas simplificaciones geométricas e idealizaciones del comportamiento de carga de los miembros estructurales. Por lo tanto, se demuestra la practicidad de estas idealizaciones en ausencia de datos de diseño. Este estudio ofrece un enfoque novedoso para evaluaciones estructurales de aeronaves sin depender de datos de diseño patentados. El método validado mejora la capacidad de los operadores de aeronaves para realizar análisis estructurales efectivos, extendiendo así la vida útil de las aeronaves con aeronavegabilidad continua.
Descargas
Citas
[1] S. M. Tavares, J. A. Ribeiro, B. A. Ribeiro and P. M. de Castro, “Aircraft Structural Design and Life-Cycle Assessment through Digital Twins,” Designs, vol. 8, no. 2, p. 29, 2024. https://doi.org/10.3390/designs8020029
[2] B. Main, L. Molent, R. Singh and S. Barter, “Fatigue Crack Growth Lessons from Thirty-Five years of The Royal Australian Air Force F/A-18 A/B Hornet Aircraft Structural Integrity Program,” International Journal of Fatigue, vol. 133, no. 7, p. 426, 2020. https://doi.org/10.1016/j.ijfatigue.2019.105426
[3] M. J. Scott, W. J. Verhagen, M. T. Bieber, and P. Marzocca, “A Systematic Literature Review of Predictive Maintenance for Defence Fixed-Wing Aircraft Sustainment and Operations,” Sensors, vol. 22, no. 18, p. 7070, 2022. https://doi.org/10.3390/s22187070
[4] L.-H. Zhang, W.-J. Li, C. Zhang and S. Wang, “Outsourcing Strategy of an Original Equipment Manufacturer in a Sustainable Supply Chain: Whether and How Should a Contract Manufacturer Encroach?,” Transportation Research Part E: Logistics and Transportation Review, vol. 174, no. 3, p. 132, 2023, https://doi.org/10.1016/j.tre.2023.103132
[5] M. A. Sezal and F. Giumelli, “Technology Transfer and Defence Sector Dynamics: The Case of Netherlands,” European Security, vol. 31, no. 4, p. 558, 2022. https://doi.org/10.1080/09662839.2022.2028277
[6] V. Cusati, S. Corcione and V. Memmolo, “Impact of Structural Health Monitoring on Aircraft Operating Costs by Multidisciplinary Analysis,” Sensors, vol. 21, no. 20, p. 938, 2021. https://doi.org/10.3390/s21206938.
[7] M. Orlovsky, A. Priymak and V. Voytenko, “Concept of Continued Airworthiness of Aircraft at Different Stages of Life Cycle,” Open Information and Computer Integrated Technologies, vol. 12, no. 90, p. 45, 2020.
[8] S. Zhang and M. Mikulich, “Parametric CAD Modelling of Aircraft Wings for FEA Vibration Analysis,” Journal of Applied Mathematics and Physics, vol. 9, no. 5, p. 889, 2021.
https://doi.org/ 10.4236/jamp.2021.95060.
[9] A. Bacciaglia, A. Ceruti and A. Liverani, “Surface Smoothing for Topological Optimized 3D Models,” Structural and Multidisciplinary Optimization, vol. 64, no. 6, p. 3453, 2021. https://doi.org/10.1007/s00158-021-03027-6
[10] A. Mazier, A. Bilger, A. E. Forte, I. Peterlik, J. S. Hale, and S. P. Bordas, “Inverse Deformation Analysis: An Experimental and Numerical Assessment Using the FENICS Project,” Engineering with Computers, vol. 38, no. 5, p. 99, 2022. https://doi.org/10.1007/s00366-021-01597-z
[11] Y. Cai, D. Rajaram and D. N. Mavris, “Simultaneous Aircraft Sizing and Multi-Objective Optimization considering Off-Design Mission Performance during Early Design,” Aerospace Science and Technology, vol. 126, no. 10, p. 662, 2022. https://doi.org/10.1016/j.ast.2022.107662
[12] A. Bazerghi and J. A. Van Mieghem, “Last Time Buys during Product Rollovers: Manufacturer & Supplier Equilibria,” Production and Operations Management, vol. 33, no. 3, p. 757, 2024 https://doi.org/10.1177/10591478241231859
[13] A. A. Pohya, J. Wehrspohn, R. Meissner, and K. Wicke, “A Modular Framework for the Life Cycle Based Evaluation of Aircraft Technologies, Maintenance Strategies, and Operational Decision Making Using Discrete Event Simulation,” Aerospace, vol. 8, no. 7, p. 187, 2021. https://doi.org/10.3390/aerospace8070187.
[14] I. Kabashkin, V. Perekrestov, T. Tyncherov, L. Shoshin and V. Susanin, “Framework for Integration of Health Monitoring Systems in Life Cycle Management for Aviation Sustainability and Cost Efficiency,” Sustainability, vol. 16, no. 14, p. 154. 2024. https://doi.org/10.3390/su16146154
[15] J. Lin, “Durability and Damage Tolerance Analysis Methods for Lightweight Aircraft Structures: Review and Prospects,” International Journal of Lightweight Materials and Manufacturing, vol. 5, no. 2, p. 224, 2022. https://doi.org/10.1016/j.ijlmm.2022.02.001
[16] P. Korba, S. Al-Rabeei, M. Hovanec, I. Sekelová, and U. Kale, “Structural Design and Material Comparison for Aircraft Wing Box Beam Panel,” Heliyon, vol. 10, no. 5, 2024. https://doi.org/10.1016/j.heliyon.2024.e27403
[17] Y. Tian et al., “Optimal Design and Analysis of a Deformable Mechanism for a Redundantly Driven Variable Swept Wing,” Aerospace Science and Technology, vol. 146, no. 10, p. 993, 2024. https://doi.org/10.1016/j.ast.2024.108993
[18] L. Félix, A. A. Gomes and A. Suleman, “Topology Optimization of the Internal Structure of An Aircraft Wing Subjected to Self-Weight Load,” Engineering Optimization, vol. 52, no. 7, pp. 1119-1135. 2020. https://doi.org/10.1080/0305215X.2019.1639691
[19] W. Skarka, R. Kumpati and M. Skarka, “Failure Analysis of a Composite Structural Spar and Rib-to-Skin Joints,” Procedia Structural Integrity, vol. 54, no. 4, pp. 490-497, 2024. https://doi.org/10.1016/j.prostr.2024.01.111
[20] N. R. Berger, S. G. Russell and D. N. Mavris, “Preliminary Weight Study Comparing Multi-Rib and Multi-Spar Wing Box Configurations using SPANDSET,” in Scitech 2021 Forum, Reston, VA 2021, vol. 4, no. 8: AIAA, p. 922. https://doi.org/10.2514/6.2021-0922
[21] P. V. Kumar, I. R. Raj, M. S. Reddy and N. S. Prasad, “Design and Finite Element Analysis of Aircraft Wing Using Ribs and Spars,” Turkish Journal of Computer and Mathematics Education, vol. 12, no. 8, p. 3224, 2021.
[22] J. Slota, A. Kubit, T. Trzepieciński, B. Krasowski and J. Varga, “Ultimate Load-Carrying Ability of Rib-Stiffened 2024-T3 And 7075-T6 Aluminium Alloy Panels Under Axial Compression,” Materials, vol. 14, no. 5, p. 1176, 2021.https://doi.org/10.3390/ma14051176
[23] P. Dwivedi, A. N. Siddiquee and S. Maheshwari, “Issues and Requirements for Aluminum Alloys Used In Aircraft Components: State of the Art Review,” Russian Journal of Non-Ferrous Metals, vol. 62, no. 4, pp. 212-225 2021. https://doi.org/10.3103/S1067821221020048
[24] S. De, M. Jrad and R. K. Kapania, “Structural Optimization of Internal Structure of Aircraft Wings with Curvilinear Spars and Ribs,” Journal of Aircraft, vol. 56, no. 2, pp. 707-718 2019. https://doi.org/10.2514/1.C034818
[25] C. Collier and S. Jones, “Unified Analysis of Aerospace Structures through Implementation of Rapid Tools into a Stress Framework,” in Scitech 2020 forum, Orlando, Florida, 2020, vol. 41, no. 12: AIAA p. 1478. https://doi.org/10.2514/6.2020-1478.
[26] J. Kudela and R. Matousek, “Recent Advances and Applications of Surrogate Models for Finite Element Method Computations: A Review,” Soft Computing, vol. 26, no. 24, 13709,13733, 2022. https://doi.org/10.1007/s00500-022-07362-8
[27] A. Haider, “Efficiency Enhancement Techniques in Finite Element Analysis: Navigating Complexity for Agile Design Exploration,” Aircraft Engineering and Aerospace Technology, 2024. https://doi.org/10.1108/AEAT-02-2024-0053
[28] A. Haider, “Enhancing Transparency and Reproducibility in Finite Element Analysis through Comprehensive Reporting Parameters: A Review,” El-Cezeri Journal.
https://doi.org/ 10.31202/ecjse.1436203
[29] T. V. Kumar, A. W. Basha, M. Pavithra and V. Srilekha, “Static & Dynamic Analysis of a Typical Aircraft Wing Structure Using MSC Nastran,” Int. J. Res. Aeronaut. Mech. Eng, vol. 3, no. 7, pp. 1-12, 2015.
[30] A. H. Bhutta, “Optimizing Structural Integrity of Fighter Aircraft Wing Stations: a Finite Element Analysis Approach,” Ingenius, vol. 1, no. 32, pp. 90-100, 2024. https://doi.org/10.17163/ings.n32.2024.09
[31] R. Kumar B, “Investigation on Buckling Response of the Aircraft’s Wing Using Finite-Element Method,” Australian Journal of Mechanical Engineering, vol. 18, no. Sup1, pp. S122-S131, 2020. https://doi.org/10.1080/14484846.2018.1483467
[32] J. S. M. Ali, W. M. H. Embong and A. Aabid, “Effect of Cut-out Shape on the Stresses in Aircraft Wing Ribs Under Aerodynamic Load,” CFD Letters, vol. 13, no. 11, pp. 87-94. 2021. https://doi.org/10.37934/cfdl.13.11.8794
[33] F. Sarka, “Examination of Bolt Connection with Finite Element Method,” in Vehicle and Automotive Engineering: Springer, 2022, pp. 212-222.
[34] J. H. Jang and S. H. Ahn, “FE Modeling Methodology for Load Analysis and Preliminary Sizing of Aircraft Wing Structure,” International Journal of Aviation, Aeronautics, and Aerospace, vol. 6, no. 2, p. 1, 2019. https://doi.org/10.15394/ijaaa.2019.1301
[35] S. Fu and N. P. Avdelidis, “Prognostic and Health Management of Critical Aircraft Systems and Components: An Overview,” Sensors, vol. 23, no. 19, p. 8124, 2023. https://doi.org/10.3390/s23198124
[36] W. K. Liu, S. Li and H. S. Park, “Eighty Years of the Finite Element Method: Birth, Evolution, and Future,” Archives of Computational Methods in Engineering, vol. 29, no. 6, pp. 4431-4453, 2022.
https://doi.org/ 10.1007/978-981-19-3363-9
[37] D. Arndt et al., “Finite Element Library: Design, Features, And Insights,” Computers & Mathematics with Applications, vol. 81, no. 22, pp. 407-422, 2021. https://doi.org/10.1016/j.camwa.2020.02.022
[38] M. Ainsworth and C. Parker, “Unlocking the Secrets of Locking: Finite Element Analysis in Planar Linear Elasticity,” Computer Methods in Applied Mechanics and Engineering, vol. 395, no. 11, p. 115034, 2022. https://doi.org/10.1016/j.cma.2022.115034
[39] C. Hagigat, “Elaboration of Degrees of Freedom in NASTRAN/PATRAN by comparing “Rod” and “Beam” Elements,” Journal of Innovative Ideas in Engineering and Technology, vol. 1, no. 1, p. 8, 2022.
[40] N. Yang, “Methodology of Aircraft Structural Design Optimisation,” International Journal of Computer Applications in Technology, vol. 70, no. 3, p. 145, 2022. https://doi.org/10.1504/IJCAT.2022.130874
[41] A. H. Bhutta, “Appropriate Boundary Condition for Finite Element Analysis of Structural Members Isolated from Global Model,” NED University Journal of Research, vol. 18, no. 3, pp. 61-75, 2021. https://doi.org/10.35453/NEDJR-STMECH-2021-0001.
[42] S. Ereiz, I. Duvnjak and J. F. Jiménez-Alonso, “Review of Finite Element Model Updating Methods for Structural Applications,” Structures, Atlanta, Georgia, 2022, vol. 41, no. 12, pp. 684-723. Elsevier. https://doi.org/10.1016/j.istruc.2022.05.041
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Los Autores
Esta obra está bajo una licencia Creative Commons Reconocimiento 3.0 Unported.
Los artículos e investigaciones publicadas por la Universidad UTE, se realizan en régimen de Acceso Abierto [Open Access] en formato electrónico. Esto significa que todo el contenido está disponible de forma gratuita sin costo para el usuario o su institución. Los usuarios pueden leer, descargar, copiar, distribuir, imprimir, buscar o enlazar los textos completos de los artículos, o usarlos para cualquier otro propósito legal, sin necesidad de pedir permiso previo al editor o al autor. Esto está de acuerdo con la definición de acceso abierto de la Iniciativa de Acceso Abierto de Budapest (BOAI). Al enviar un artículo a cualquiera de las revistas científicas de la Universidad UTE, el o los autores aceptan estas condiciones.
La UTE aplica la licencia Creative Commons Attribution (CC-BY) a los artículos de sus revistas científicas. En virtud de esta licencia de acceso abierto, como autor usted acuerda que cualquier persona puede reutilizar su artículo en su totalidad o en parte para cualquier propósito, de forma gratuita, incluso para fines comerciales. Cualquiera puede copiar, distribuir o reutilizar el contenido siempre y cuando el autor y la fuente original estén correctamente citados. Esto facilita la libertad de reutilización y también asegura que el contenido pueda ser extraído sin barreras para necesidades de investigación.
Esta obra está bajo una Creative Commons Attribution 3.0 International (CC BY 3.0).
Además, la Revista Enfoque UTE garantiza y declara que los autores conservan siempre todos los derechos de autor y todos los derechos de publicación sin restricciones [© Los Autores]. El reconocimiento (BY) permite cualquier explotación de la obra, incluyendo una finalidad comercial, así como la creación de obras derivadas, la distribución de las cuales también está permitida sin ninguna restricción.