Modelamiento de orden fraccional de un sistema no lineal electromecánico
DOI:
https://doi.org/10.29019/enfoqueute.v9n4.398Palabras clave:
Cálculo Fraccional, Sistema Dinámico Electromecánico, Estimación de Parámetros Fraccionales, Filtro de Kalman ExtendidoResumen
Este artículo presenta una novedosa técnica de modelamiento dinámico no lineal, basada en derivadas de orden fraccional, para un sistema electromecánico de tipo VTOL. El método propuesto estudia la posibilidad de modelar dinámicamente el sistema electromecánico mediante ecuaciones diferenciales de carácter fraccional realizando una comparación con mediciones reales, de tal forma que con base en estas mediciones y un filtro de Kalman extendido, nosotros logremos estimar los parámetros fraccionales óptimos para los operadores diferenciales fraccionales. La ventaja principal del modelamiento fraccional con respecto al modelamiento clásico, radica en que el primero logra representar mejor las diferentes dinámicas lentas y rápidas presentes en los sistemas electromecánicos debidas a las componentes mecánicas y eléctricas respectivamente.
Descargas
Citas
Chen, X., Chen, Y., Zhang, B., and Qiu, D. (2017). A Modeling and Analysis Method for Fractional-Order DC-DC Converters. IEEE Transactions on Power Electronics, 32(9), 7034-7044.
Gómez, J.F., Yépez, H., Escobar, R.F., Astorga, C.M., and Reyes, J. (2016). Analytical and numerical solutions of electrical circuits described by fractional derivatives. Applied Mathematical Modelling, 40(21), 9079-9094.
Lazarevi, M.P., Mandi, P.D., Cvetkovi, B., ekara, T.B., and Lutovac, B. (2016). Some electromechanical systems and analogies of mem-systems integer and fractional order. In 2016 5th Mediterranean Conference on Embedded Computing (MECO), 230-233.
Li, C. and Ma, Y. (2013). Fractional dynamical system and its linearization theorem. Nonlinear Dynamics, 71(4), 621-633.
Miller, K.s. and Ross, B. (1993). An introduction to the fractional calculus and fractional differential equations. Wiley-Interscience, 1 edition.
Özkan, B. (2014). Control of an Electromechanical Control Actuation System Using a Fractional Order Proportional, Integral, and Derivative-Type Controller. IFAC Proceedings Volumes, 47(3), 4493-4498.
Petrás, I. (2011). Fractional-Order Nonlinear Systems. Nonlinear Physical Science. Springer Berlin Heidelberg, Berlin, Heidelberg.
Podlubny, I. (1999). Fractional-order systems and PIλ Dμ-controllers. IEEE Transactions on Automatic Control, 44(1), 208-214.
Podlubny, I. (1998). Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Academic Press.
Rahimy, M. (2010). Applications of fractional differential equations. Applied Mathematica Sciences 4(50): 2453-2461.
Rendón, J. (2018). Aplicaciones del cálculo fraccional en modelamiento y control de sistemas dinámicos electromecánicos. Master's thesis, Universidad Nacional de Colombia, Medellín, Colombia.
Schäfer, I. and Krüger, K. (2006). Modelling of coils using fractional derivatives. Journal of Magnetism and Magnetic Materials, 307(1), 91-98.
Sierociuk, D. and Dzieliski, A. (2006). Fractional kalman filter algorithm for the states parameters and order of fractional system estimation. International Journal of Applied Mathematics and Computer Science, 16(1), 129-140.
Swain, S.K., Sain, D., Mishra, S.K., and Ghosh, S. (2017). Real time implementation of fractional order PID controllers for a magnetic levitation plant. AEU – International Journal of Electronics and Communications, 78, 141-156.
Tenreiro, J.A., Silva, M.F., Barbosa, R.S., Jesus, I.S., Reis, C., M, L., Marcos, M.G., and Galhano, A.F. (2010). Some Applications of Fractional Calculus in Engineering. Mathematical Problems in Engineering vol. 2010, article ID 639801. http://dx.doi.org/10.1155/2010/639801
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Los artículos e investigaciones publicadas por la Universidad UTE, se realizan en régimen de Acceso Abierto [Open Access] en formato electrónico. Esto significa que todo el contenido está disponible de forma gratuita sin costo para el usuario o su institución. Los usuarios pueden leer, descargar, copiar, distribuir, imprimir, buscar o enlazar los textos completos de los artículos, o usarlos para cualquier otro propósito legal, sin necesidad de pedir permiso previo al editor o al autor. Esto está de acuerdo con la definición de acceso abierto de la Iniciativa de Acceso Abierto de Budapest (BOAI). Al enviar un artículo a cualquiera de las revistas científicas de la Universidad UTE, el o los autores aceptan estas condiciones.
La UTE aplica la licencia Creative Commons Attribution (CC-BY) a los artículos de sus revistas científicas. En virtud de esta licencia de acceso abierto, como autor usted acuerda que cualquier persona puede reutilizar su artículo en su totalidad o en parte para cualquier propósito, de forma gratuita, incluso para fines comerciales. Cualquiera puede copiar, distribuir o reutilizar el contenido siempre y cuando el autor y la fuente original estén correctamente citados. Esto facilita la libertad de reutilización y también asegura que el contenido pueda ser extraído sin barreras para necesidades de investigación.
Esta obra está bajo una Creative Commons Attribution 3.0 International (CC BY 3.0).
Además, la Revista Enfoque UTE garantiza y declara que los autores conservan siempre todos los derechos de autor y todos los derechos de publicación sin restricciones [© Los Autores]. El reconocimiento (BY) permite cualquier explotación de la obra, incluyendo una finalidad comercial, así como la creación de obras derivadas, la distribución de las cuales también está permitida sin ninguna restricción.