Control MPC Tolerante a Fallos Para Calentador Eléctrico

Autores/as

  • Raúl Esteban Alzate Universidad Autónoma de Occidente
  • Diego Martinez Universidad Autónoma de Occidente
  • Juan Carlos Mena Universidad Autónoma de Occidente
  • Bernado Sabogal Universidad Autónoma de Occidente
  • Jimmy Tombe Universidad Autónoma de Occidente

DOI:

https://doi.org/10.29019/enfoqueute.v9n4.402

Palabras clave:

tolerante a fallas; detección de fallas; control predictivo; control cuadrático; modelos dinámicos.

Resumen

Los controladores MPC son buenos eliminando el error de estado estacionario aun si el sistema controlado es afectado por perturbaciones. Pero el MPC no fue pensado para mantener su desempeño bajo condiciones de falla por sí solo. El control tolerante a fallas se compone de algoritmos de control, estrategias de detección y compensación de fallas. En este trabajo se implementó un controlador MPC usando la estrategia de matriz dinámica junto con un generador de residuo basado en modelo para detectar la ocurrencia de una falla en el sistema controlado. La cuantificación de fallas se logró mediante el uso de Redes neuronales artificiales y un filtro pasa banda, lo cual permitió realizar una acción de compensación para mejorar el tiempo de recuperación del sistema ante una falla.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Fernandez-Cavero, V., Morinigo-Sotelo, D., Duque-Perez, O., and Pons-Llinares, J. (2015). Fault detection in inverter-fed induction motors in transient regime: State of the art. In 2015 IEEE 10th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED), 205–211. doi:10.1109/DEMPED.2015.7303691.
Ferreau, H., Kirches, C., Potschka, A., Bock, H., and Diehl, M. (2014). qpOASES: A parametric active-set algorithm for quadratic programming. Mathematical Programming Computation, 6(4), 327–363.
Gao, Z., Cecati, C., and Ding, S.X. (2015a). A survey of fault diagnosis and fault-tolerant techniques x2014;parti: Fault diagnosis with model-based and signal-based approaches. IEEE Transactions on Industrial Electronics, 62(6), 3757–3767. doi:10.1109/TIE.2015.2417501.
Gao, Z., Cecati, C., and Ding, S.X. (2015b). A survey of fault diagnosis and fault-tolerant techniques x2014;parti: Fault diagnosis with model-based and signal-based approaches. IEEE Transactions on Industrial Electronics, 62(6), 3757–3767. doi:10.1109/TIE.2015.2417501.
Isermann, R. (2011). Fault-diagnosis applications: model-based condition monitoring: actuators, drives, machinery, plants, sensors, and fault-tolerant systems. Springer Science & Business Media.
Khan, M., Tahiyat, M., Imtiaz, S., Choudhury, M., and Khan, F. (2017). Experimental evaluation of control performance of mpc as a regulatory controller. ISA Transactions, 70, 512 – 520.doi:https://doi.org/10.1016/j.isatra.2017.04.024. URLhttp://www.sciencedirect.com/science/article/pii/S0019057817304238.
Linares, P. and Rey, L. (2013). The costs of electricity interruptions in Spain. are we sending the right signals? Energy Policy, 61, 751 – 760.doi:https://doi.org/10.1016/j.enpol.2013.05.083. URLhttp://www.sciencedirect.com/science/article/pii/S0301421513004382.
Noura, H., Theilliol, D., Ponsart, J.C., and Chamseddine, A. (2009). Fault-tolerant control systems: Design and practical applications. Springer Science & Business Media.
Seron, M.M. and Don, J.A.D. (2015). Robust fault estimation and compensation for lpv systems under actuator and sensor faults. Automatica, 52, 294 – 301.doi:https://doi.org/10.1016/j.automatica.2014.12.003.URL http://www.sciencedirect.com/science/article/pii/S0005109814005822.
Thulukkanam, K. (2013). Heat exchanger design handbook.CRC Press.
Wang, H. and Jiang, A. (2017). An active fault-tolerantmpc for systems with partial actuator failures. In 201711th Asian Control Conference (ASCC), 1614–1619.doi:10.1109/ASCC.2017.8287415.
Wang, L., Zhou, X., and Wei, X. (2007). Heat conduction: mathematical models and analytical solutions. Springer Science & Business Media.

Publicado

2018-12-21

Cómo citar

Alzate, R. E., Martinez, D., Mena, J. C., Sabogal, B., & Tombe, J. (2018). Control MPC Tolerante a Fallos Para Calentador Eléctrico. Enfoque UTE, 9(4), pp. 77 – 87. https://doi.org/10.29019/enfoqueute.v9n4.402

Número

Sección

Automatización y Control, Mecatrónica, Electromecánica, Automotriz