Técnicas de reconocimiento facial usando SVM: un análisis comparativo
DOI:
https://doi.org/10.29019/enfoque.v10n3.493Palabras clave:
Databases, Support vector machine, Facial recognition.Resumen
Este trabajo presenta una revisión literaria sobre reconocimiento facial en 2D, la cual juega un papel importante en la vida del ser humano en cuanto a su seguridad, actividad laboral, etc. El enfoque está en los resultados obtenidos por algunos investigadores con la aplicación de técnicas de extracción de características, clasificadores de patrones, bases de datos y su respectivo porcentaje de eficiencia obtenida. El objetivo es determinar técnicas eficientes que permitan realizar un proceso óptimo de reconocimiento facial en 2D, en función de la calidad de bases de datos, extractores de características y clasificador de patrones.
Descargas
Citas
Benavides, D. J., Jurado, F., y González, L. G. (2018). Data analysis and tools applied to modeling and simulation of a PV system in Ecuador ( Análisis de datos y herramientas aplicadas al modelado y simulación de un sistema fotovoltaico en Ecuador ), 1-12.
Benavente, R., Martínez, A. (2014). The AR Face Database. Computer Vision Center, (January 1998): 1-8.
Benitez-Garcia, G., Olivares-Mercado, J., Aguilar-Torres, G., Sanchez-Perez, G., y Perez-Meana, H. (2012). Face Identification Based on Contrast Limited Adaptive Histogram Equalization (CLAHE), (mayo 2015).
Cabello Pardos, E. (2003). Técnicas de reconocimiento facial mediante redes neuronales, 135. Retrieved from http://dialnet.unirioja.es/servlet/tesis?codigo=2586&info=resumen&idioma=SPA
Calle-López, D., Cornejo-Reyes, J., Pesántez-Avilés, F., y Rodas, M. (2018). Un sistema experto basado en minería de datos y programación entera lineal para soporte en la asignación de materias y diseño de horarios en educación superior ( An expert system based on data mining and linear integer programming to support the timetabling design and courses assignment in higher education ), 102-117.
Chang, C., & Lin, C. (2013). LIBSVM : A Library for Support Vector Machines. ACM Transactions on Intelligent Systems and Technology (TIST), 2: 1-39. https://doi.org/10.1145/1961189.1961199
Correa, A. C., Salazar, A. E. S., y Ortiz, F. A. P. (2013). Reconocimiento de rostros y gestos faciales mediante un analisis de relecancia con imagenes 3D. Revista De Investigación, Desarrollo E Innovación, 4 (1): 7-20. https://doi.org/10.19053/20278306.2563
Deng, C. (2008). Four face databases in matlab format. Retrieved from http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html
Devi, H. S., Laishram, R., y Thounaojam, D. M. (2015). Face Recognition using R-KDA with Non-Linear SVM for Multi-View Database. Procedia Computer Science, 54, 532-541. https://doi.org/10.1016/j.procs.2015.06.061
Gao, W., Cao, B., Shan, S., Chen, X., Zhou, D., Zhan, X. (2008). The CAS-PEAL large-scale Chinese face database and baseline evaluations. IEE, 38 (1): 149-161.
Georghiades, A. (1997). Yale Face Database. Center for Computational Vision and Control, Yale.
González, M. (2007). Reconocimiento facial combinando técnicas 2D y 3D. Escola d'Enginyeria de Telecomunicació i Aeroespacial de Castelldefels. Barcelona.
Graham, D. B., y Allinson, N. (1998). Characterizing Virtual Eigensignatures for General Purpose Face Recognition. Face recognition: from theory to applications; 163 ; 446-456. Springer.
Gumus, E., Kilic, N., Sertbas, A., y Ucan, O. N. (2010). Evaluation of face recognition techniques using PCA, wavelets and SVM. Expert Systems with Applications, 37 (9): 6404–6408. https://doi.org/10.1016/j.eswa.2010.02.079
Guo, G., Li, S. Z., y Chan, K. L. (2001). Support vector machines for face recognition. Image and Vision Computing, 19, 631-638. https://doi.org/10.1016/S0262-8856(01)00046-4
Jos, C., Alamo, D., Arnaldo, L., Calla, R., y P, L. J. F. (2015). Efficient approach for interest points detection in non-rigid shapes.
Kasar, M. M., Bhattacharyya, D., y Kim, T. (2016). Face Recognition Using Neural Network : A Review, 10 (3): 81-100.
Khan, N. M., Ksantini, R., Ahmad, I. S., & Boufama, B. (2012). A novel SVM+NDA model for classification with an application to face recognition. Pattern Recognition, 45 (1): 66-79. https://doi.org/10.1016/j.patcog.2011.05.004
Kim, S.-K., Park, Y. J., Toh, K.-A., y Lee, S. (2010). SVM-based feature extraction for face recognition. Pattern Recognition, 43 (8): 2871-2881. https://doi.org/10.1016/j.patcog.2010.03.008
Kong, R., y Zhang, B. (2011). A New Face Recognition Method Based on Fast Least Squares Support Vector Machine. Physics Procedia, 22: 616-621. https://doi.org/10.1016/j.phpro.2011.11.095
Li, W., Liu, L., y Gong, W. (2011). Multi-objective uniform design as a SVM model selection tool for face recognition. Expert Systems with Applications, 38 (6): 6689-6695. https://doi.org/10.1016/j.eswa.2010.11.066
Lin, W.-H., Wang, P., y Tsai, C.-F. (2016). Face recognition using support vector model classifier for user authentication. Electronic Commerce Research and Applications, 18 (February), 1-12. https://doi.org/10.1016/j.elerap.2016.01.005
Luo, Y., Wu, C. M., y Zhang, Y. (2013). Facial expression recognition based on fusion feature of PCA and LBP with SVM. Optik, 124 (17): 2767-2770. https://doi.org/10.1016/j.ijleo.2012.08.040
Lyons, M. J. (1999). Automatic classification of single facial images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21 (12): 1357-1362. https://doi.org/10.1109/34.817413
Michel, A., Aleaga, L., Fernando, E., Garcés, M., y García, A. C. (2015). Sistema automatizado para la predicción de flujo de carga en subestaciones eléctricas mediante redes neuronales artificiales (Automated system for load flow prediction in power substations using artificial neural networks ), 20-35.Moreno, A.B., y Sanchez, A. (2004). GavabDB: A 3D Face Database. Proceedings 2nd COST Workshop on Biometrics on the Internet: Fundamentals, Advances and Applications. Vigo. pp. 77-82.
Moreno, A. B., Sanchez, A., Vélez, J. y Díaz, J. (2005). Face recognition using 3D local geometrical features: PCA vs. SVM. Image and Signal …, (1): 185-190. https://doi.org/10.1109/ispa.2005.195407
Olivares-Mercado, J., Toscano-Medina, K., Sánchez-Pérez, G., Nakano-Miyatake, M., y Pérez-Meana, H. (2016). Modifications to the Eigenphases Method for Face Recognition Based on SVM. Ingeniería, Investigación y Tecnología, 17 (1): 119-129. https://doi.org/10.1016/j.riit.2016.01.011
Peng, X. (2010). An efficient twin support vector machine for regression, PublMed, 23 (3): 365-372.
Phillips, P., Moon, H., Rizvi, S. y Rauss, P. (2000). The FERET evaluation methodology for face recognition algorithms, 22 (10): 1090-1104.
Pradhan, B. (2013). A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS, 51: 350-365.
Sim, T., Baker, S., y Bsat, M. (2003). The {CMU} pose, illuminlation, and expression database. Pami, 25 (12): 1615-1618. https://doi.org/10.1109/AFGR.2002.1004130
Spacek, L. (2008). Face recognition data ESSEX.
Stewart Bartlett, M. (1999). Face image analysis by unsupervised learning. Boston: Springer.
Valdes, M. M. L., Aleaga, A. M. L., y Vidal, G. G. (2014). Redes neuronales artificiales en la predicción de insolvencia . Un cambio de paradigma ante recetas tradicionales de prácticas empresariales (Artificial Neural Networks in the prediction of insolvency. A paradigm shift to traditional business practices recipes, 14: 38-58.
Vapnik, V. N. (1998). Statistical Learning Theory. Adaptive and Learning Systems for Signal Processing. Communications and Control, 2: 1-740. https://doi.org/10.2307/1271368
Wen, Y. (2012). An improved discriminative common vectors and support vector machine based face recognition approach. Expert Systems with Applications, 39 (4): 4628-4632. https://doi.org/10.1016/j.eswa.2011.09.119
Weyrauch, B., Heisele, B., y Blanz, V. (2004). Component-based Face Recognition with 3D Morphable Models. IEE: 0-4.
Yu, H., y Yang, J. (2001). A direct LDA algorithm for high-dimensional data—with application to face recognition. Pattern Recognition, 34 (February): 2067-2070. https://doi.org/10.1016/S0031-3203(00)00162-X
Z. Qi, Y. Tian, Y. S. (2013). Robust twin support vector machine for pattern classification, 305-316.
Zhou, X., Jiang, W., Tian, Y., y Shi, Y. (2010). Kernel subclass convex hull sample selection method for SVM on face recognition. Neurocomputing, 73 (10-12): 2234-2246. https://doi.org/10.1016/j.neucom.2010.01.008
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2019 Enfoque UTE
Esta obra está bajo una licencia Creative Commons Reconocimiento 3.0 Unported.
Los artículos e investigaciones publicadas por la Universidad UTE, se realizan en régimen de Acceso Abierto [Open Access] en formato electrónico. Esto significa que todo el contenido está disponible de forma gratuita sin costo para el usuario o su institución. Los usuarios pueden leer, descargar, copiar, distribuir, imprimir, buscar o enlazar los textos completos de los artículos, o usarlos para cualquier otro propósito legal, sin necesidad de pedir permiso previo al editor o al autor. Esto está de acuerdo con la definición de acceso abierto de la Iniciativa de Acceso Abierto de Budapest (BOAI). Al enviar un artículo a cualquiera de las revistas científicas de la Universidad UTE, el o los autores aceptan estas condiciones.
La UTE aplica la licencia Creative Commons Attribution (CC-BY) a los artículos de sus revistas científicas. En virtud de esta licencia de acceso abierto, como autor usted acuerda que cualquier persona puede reutilizar su artículo en su totalidad o en parte para cualquier propósito, de forma gratuita, incluso para fines comerciales. Cualquiera puede copiar, distribuir o reutilizar el contenido siempre y cuando el autor y la fuente original estén correctamente citados. Esto facilita la libertad de reutilización y también asegura que el contenido pueda ser extraído sin barreras para necesidades de investigación.
Esta obra está bajo una Creative Commons Attribution 3.0 International (CC BY 3.0).
Además, la Revista Enfoque UTE garantiza y declara que los autores conservan siempre todos los derechos de autor y todos los derechos de publicación sin restricciones [© Los Autores]. El reconocimiento (BY) permite cualquier explotación de la obra, incluyendo una finalidad comercial, así como la creación de obras derivadas, la distribución de las cuales también está permitida sin ninguna restricción.