Características de la arena sílica de Alvarado, Veracruz, México, como material para barreras reactivas permeables, para la remediación de acuíferos contaminados con lixiviados de basureros no controlados

Autores/as

DOI:

https://doi.org/10.29019/enfoqueute.v11n4.674

Palabras clave:

Arena Sílica, Barreras Reactivas Permeables, Basureros, Remoción de contaminantes, granulometría

Resumen

En este artículo se caracteriza la arena sílica de las costas del municipio de Alvarado, Veracruz, México, y se compara sus propiedades con los materiales usados en las barreras reactivas permeables, para permitir su uso, como una solución de remediación de acuíferos contaminados con lixiviados de basureros no controlados. Esto se logra mediante análisis granulométrico, determinación de humedad y concentración de sílice y fierro, con lo cual se obtienen partículas con tamaño de 0.707 mm, humedad relativa de 0.52 % y concentración de SiO2 y de Fe2O3 87.38 % y 2.72 % respectivamente, lo que, al comparar con materiales reactivos en uso, cumple con los criterios para ser usado como barrera para la remediación de acuíferos con lixiviados.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

ADEME. (2014). Barrières réactives. Cahier SKB, 7761. https://bit.ly/3lR1dJ0

Arenas, G. (2017). Barreras reactivas aplicables en acuíferos para la remoción de materia orgánica proveniente de residuos urbanos (tesis de maestría). Programa de Maestría y Doctorado en Ingeniería (Ingeniería Ambiental – Agua). Universidad Nacional Autónoma de México.

Agrawal, S.; King, K.; Fischer, R.; Woner, D. (2011). PO43− Removal by and Permeability of Industrial Byproducts and Minerals: Granulated Blast Furnace Slag, Cement Kiln Dust, Coconut Shell Activated Carbon, Silica Sand, and Zeolite. Water Air Soil Pollut 219, 91-101.

Arenas-Moreno, G. (2017). Barreras reactivas aplicables en acuíferos para la remoción de materia orgánica proveniente de residuos urbanos. [Tesis de Maestría, Ingeniería Ambiental-Agua, UNAM, México]

Asokbunyarat,V.; Lens, P.; Annachhatre, A. (2017). Permeable Reactive Barriers for Heavy Metal Removal, Sustainable Heavy Metal Remediation. Vol. 1. Principles and Processes (pp. 65-100).

Bohn, H. L.; McNeal, B. L.; O'Connor, G. A. (1985). Soil Chemistry. USA: John Wiley & Sons, Inc.

Bernaché, G. (2012). Riesgo de contaminación por disposición final de residuos. Un estudio de la región centro occidente de México. Rev. Int. Contam. Ambie 28, Sup. (1), 97-105.

Chimenos, J.; Navarro, A. (2002). Descontaminación de aguas subterráneas mediante barreras reactivas permeables. Tecnología del Agua 1, 38-45.

Cordeiro Andrade, D.; Vieira dos Santos, E. (2020). Combination of Electrokinetic Remediation with Permeable Reactive Barriers to Remove Organic Compounds from Soils. Current Opinion in Electrochemistry 22, 136-144. https://doi.org/10.1016/j.coelec.2020.06.002

Courcelles, B.; Modaressi-Farahmand-Razavi, A.; Gouvenot, D.; Esnault-Filet, A. (2011). Influence of Precipitates on Hydraulic Performance of Permeable Reactive Barrier Filter. Vol. 1. International Journal of Geomechanics, No. 2, April.

Cucarella, V.; Renman, G. (2009). Phosphorus Sorption Capacity of Filter Materials Used for On-site Wastewater Treatment Determined in Batch Experiments—A Comparative Study. J. Environ. Qual, (38), 381–392.

Díaz, M.; Campos, R.; Zamora, S.; Salgado, R. (2018). Cuantificación experimental del contenido masivo de SiO2 en depósitos eólicos de arena en una región de la cuenca del río Papaloapan, Veracruz, México. Vol. 22. Ingeniería Revista Académica de la Facultad de Ingeniería, Universidad Autónoma de Yucatán, 22, No. 1.

Dirección General de Desarrollo Minero. (2011). Perfil del mercado del sílice, Secretaría de Economía, Gobierno de México.

Faisal A., Ahmed M. (2014). Removal of Copper Ions from Contaminated Groundwater Using Waste Foundry Sand as Permeable Reactive Barrier. Int. J. Environ. Sci. Technol, (12), 2613–2622.

Faisal, A.; Sulaymon, A.; Khaliefa, Q. (2018). A review of Permeable Reactive Barrier as Passive Sustainable Technology for Groundwater Remediation. Int. J. Environ. Sci. Technol, (15), 1123–1138.

Han, Z.; Ma, H.; Shi, G, et al. (2016). A review of Groundwater Contamination Near Municipal Solid Waste Landfill Sites in China. Sci. Total Environ, 569–570; 1255–1264.

ITRC. (2011). Permeable Reactive Barrier: Technology Update. BRP-5. Washington, D.C.: Interstate Technology & Regulatory Council, BRP: Technology Update Team. https://bit.ly/3jN2z5L

Liu, S.; Li, X.; Wang, H. (2011). Hydraulics Analysis for Groundwater Flow Through Permeable Reactive Barriers, Environ Model Assess (2011), 16:591–598.

Maitra S. (2019). Permeable Reactive Barrier: A Technology for Groundwater Remediation – A Mini Review. Research Journal of Life 5(1):203.

Miao, L.; Yang, G.; Tao, T.; Peng, Y. (2019). Recent Advances in Nitrogen Removal from Landfill Leachate Using Biological Treatments - A Review. J. Environ. Manag, (235),178-185.

Mittal, A.; Singh, R.; Chakma, S.; Gaurav, G. (2020). Permeable Reactive Barrier Technology for the Remediation of Groundwater Contaminated with Nitrate and Phosphate Resulted from Pit-Toilet Leachate. Vol. 37. Journal of Water Process Engineering.

Mohan, S.; Gandhimathi, R. (2009). Removal of Heavy Metal Ions from Municipal Solid Waste Leachate Using Coal Fly Ash as an Adsorbent. J Hazard Mater 169(1–3):351–359.

McRae, C. (1999). Evaluation of Reactive Materials for In Situ Treatment of Arsenic III, Arsenic V and Selenium VI Using Permeable Reactive Barriers: Laboratory Study, (MSc Thesis). University of Waterloo, Waterloo, Ontario, Canada.

Narasimha, I; Bubu, J. (2016). Investigations on Physical and Chemical Properties of High Silica Sand, Fe-Cr Slag and Blast Furnace Slag for Foundry Applications. Procedia Environmental Sciences (35), 583 – 596.

NOM-083-Semarnat-083. (20 de octubre de 2004). Especificaciones de protección ambiental para la selección del sitio, diseño, construcción, operación, monitoreo, clausura y obras complementarias de un sitio de disposición final de residuos sólidos urbanos y de manejo especial. Diario Oficial de la Federación. México.

Naveen, B. P.; Mahapatra, D. M.; Sitharam, T. G.; Sivapullaiah, P. V., Ramachandra, T. V. (2017). Physico-chemical and Biological Characterization of Urban Municipal Landfill 373 Leachate. Environ. Pollut 220, pp. 1-12.

Payan, S. (2013). Estudio y diseño de biofiltro a partir de materia orgánica para el tratamiento de agua [Tesis de Doctorado, Centro de Investigación en Materiales Avanzados S.C.]. https://bit.ly/35cOOtj

Pérez Espinoza, V. (2014). Inmovilización de elementos potencialmente tóxicos en zonas mineras abandonadas mediante la construcción de tecnosoles y barreras reactivas permeables [Tesis de Doctorado, Universidad de Murcia, España] https://bit.ly/3h5qHPb

Roehl, K. E.; Czurda, K.; Meggyes, T.; Simon, F. G.; Stewart, D. I. (2005). Permeable Reactive Barriers. In: Roehl KE, Meggyes T, Simon FG, Stewart DI (eds.) Long-term Performance of Permeable Reactive Barriers. Elsevier, Amsterdam Sciences, Bioinformatics, Pharmaceutical and Chemical Sciences 5(1) 203-217.

Scherer, M. M.; Richter, S.; Valentine, R. L.; Álvarez P. J. J. (2000). Chemistry and microbiology of permeable reactive barriers for in situ groundwater clean-up. Critical Reviews. Environmental Science and Technology 30(3): 363-411.

SEFIPLAN. (2012). Estudios regionales para la planeación. Información básica. Gobierno de Veracruz. https://bit.ly/3jM057D

Segura, R.; Martínez, G.; Apolinar, J.; García, M. (2015). Remoción de Cr6+ de lixiviados de tiraderos de basura con arcillas modificadas o activadas. Ciencia UANL 75, año 18, pp. 54-70.

Striegel, J.; Sanders, D. A.; Veenstra, J. (2001). Treatment of Contaminated Groundwater Using Permeable Reactive Barriers. Environmental Geosciences 8(4), 258-265.

Susunaga-Miranda, M. A.; Estévez-Garrido, B. M. (2018). Metales pesados en los lixiviados provenientes del basurero no controlado de la Ciudad de Veracruz. Vol. 5 Revista Iberoamericana de Ciencias 6, 164-171.

Thiruvenkatachari, R.; Vigneswaran, S.; Naidu, R. (2008). Permeable Reactive Barrier for Groundwater Remediation. J Ind Eng Chem 14(2):145–156.

Teta, C. & Hikwa, T. (2017). Heavy Metal Contamination of Ground Water from an Unlined Landfill in Bulawayo, Zimbabwe. Journal of health & pollution 7(15), 18–27.

Vázquez-Lule, A.; Rodríguez-Zúñiga, M.; Ramírez-García, P. (2009). Caracterización del sitio de manglar sistema lagunar de Alvarado Veracruz, en Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (Conabio). Sitios de manglar con relevancia biológica y con necesidades de rehabilitación ecológica. Conabio, México, D.F

Vukojević, N.; Daković, A.; Ugrina, M. et al. (2017). Evaluation of Low-cost Sorbent as Potental Materials for In-Situ Remediation of Water Contaminated with Heavy Metals. Technologica Acta 10(2) 9–13.

Yin, S.; Herath, G.; Heng, S.; Kalpage, S. (2017). Using Permeable Reactive Barriers to Remediate Heavy Metal-Contaminated Groundwater through a Laboratory Column. Experiment American Journal of Environmental Sciences 13(2): 103-115

Publicado

2020-10-01

Cómo citar

Susunaga Miranda, M. A., Estévez-Garrido , B. M., & Susunaga-Estévez , R. M. (2020). Características de la arena sílica de Alvarado, Veracruz, México, como material para barreras reactivas permeables, para la remediación de acuíferos contaminados con lixiviados de basureros no controlados. Enfoque UTE, 11(4), pp. 87 – 100. https://doi.org/10.29019/enfoqueute.v11n4.674

Número

Sección

Misceláneos