Modelos de velocidad de operación de carreteras rurales en terreno llano en Costa Rica

Autores/as

DOI:

https://doi.org/10.29019/enfoqueute.732

Palabras clave:

consistencia del trazado, modelo de predicción de velocidad de operación, seguridad vial

Resumen

Por varias décadas, en la práctica ingenieril se ha evaluado la influencia del trazado de la carretera en la seguridad vial mediante el análisis de la consistencia; para ello es necesario contar con los perfiles de velocidad de operación del proyecto nuevo o de la carretera existente. Con este fin, generalmente, se emplean modelos de velocidad de operación existentes que fueron desarrollados para otras condiciones, regiones o países. En los análisis de consistencia del trazado es imprescindible contar con la información de la planta, el perfil del proyecto y la velocidad de operación de los vehículos. Una de las principales dificultades y fuentes de error en estos análisis radica en determinar la velocidad de operación. El objetivo del trabajo es desarrollar modelos de predicción de velocidad de operación para Costa Rica que consideren las características del trazado y las condiciones del parque vehicular. El procedimiento seguido incluye una serie de etapas, desde el análisis de las carreteras del territorio hasta el desarrollo de los modelos de predicción del perfil de velocidad y su validación. Como resultado de la investigación se proponen, por primera vez en Costa Rica, modelos de predicción de las velocidades de operación de las rutas nacionales con características rurales en terreno llano. Se demuestra que las ecuaciones propuestas presentan menores errores de estimación si se comparan con algunos de los modelos más usados internacionalmente.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Abebe, M. T., & Belayneh, M. Z. (2018). Identifying and Ranking Dangerous Road Segments a Case of Hawassa-Shashemene-Bulbula Two-Lane Two-Way Rural Highway, Ethiopia. Journal of Transportation Technologies, 8(03), 151–174. https://doi.org/10.4236/jtts.2018.83009

Almeida, R., Vasconcelos, L., & Bastos Silva, A. (2018). Design Consistency Index for Two-lane Roads Based on Continuous Speed Profiles. PROMET. Traffic&Transportation, 30(2), 231–239. https://doi.org/10.7307/ptt.v30i2.2573

Choudhari, T., & Maji, A. (2019). Effect of Horizontal Curve Geometry on the Maximum Speed Reduction: A Driving Simulator-Based Study. Transportation in Developing Economies, 5(2), 1–8. https://doi.org/10.1007/s40890-019-0082-8

COSEVI (Consejo de Seguridad Vial). (2020). Accidentes. https://datosabiertos.csv.go.cr/dashboards/19683/accidentes/

Dai, Y., Lyu, N., & Hu, Y. (2017, 8–10, August). Truck Speed Characteristics Analysis of Typical Highway Segments Based on GPS Data. 2017 4th International Conference on Transportation Information and Safety (ICTIS). Banff, AB, Canada. https://doi.org/10.1109/ICTIS.2017.8047817

Echaveguren, T., Henríquez, C., & Jiménez-Ramos, G. (2020). Longitudinal Acceleration Models for Horizontal Reverse Curves of Two-Lane Rural Roads. The Baltic Journal of Road and Bridge Engineering, 15(1), 103–125. https://doi.org/10.7250/bjrbe.2020-15.463

Fitzpatrick, K., Wooldridge, M. D., Tsimhoni, O., Collins, J. M., Green, P., Bauer, K. M., Parma, K. D., Koppa, R., Harwood, D. W., Anderson, I., Krammes, R. A., & Poggioli, B. (2000). Alternative Design Consistency Rating Methods for Two-Lane Rural Highways. U. S. Department of Transportation, Final Report, FHWA-RD-99-172. https://trid.trb.org/view/691718

García-Ramírez, Y. D., & Alverca, F. (2019). Calibración de ecuaciones de velocidades de operación en carreteras rurales montañosas de dos carriles: Caso de estudio ecuatoriano. Revista Politécnica, 43(2), 37–44. https://doi.org/10.33333/rp.vol43n2.1012

García-Ramírez, Y., Zárate, B., Segarra, S., & González, J. (2017). Variación diaria y horaria de la velocidad de operación en carreteras rurales de dos carriles en el cantón Loja. Revista Politécnica, 40(1), 45–51. https://doi.org/10.33333/rp.v40i1.864

García, R. A., Delgado, D. E., & Díaz, E. E. (2012). Modelos de perfil de velocidad para evaluación de consistencia del trazado en carreteras de la provincia de Villa Clara, Cuba. Revista Ingeniería de Construcción, 27(2), 71–82. https://doi.org/10.4067/S0718-50732012000200005

Goralzik, A., & Vollrath, M. (2017). The Effects of Road, Driver, and Passenger Presence on Drivers’ Choice of Speed: A Driving Simulator Study. Transportation Research Procedia, 25, 2061–2075. https://doi.org/10.1016/j.trpro.2017.05.400

Kiran, B. N., Kumaraswamy, N., & Sashidhar, C. (2017). A Review of Road Crash Prediction Models for Developed Countries. American Journal of Traffic and Transportation Engineering, 2(2), 10–25. https://doi.org/10.11648/j.ajtte.20170202.11

Leisch, J. E., & Leisch, J. P. (1977). New Concepts in Design-Speed Application. Transportation Research Record, 631, 4–14. https://trid.trb.org/view/71966

Li, L., Gayah, V. V., & Donnell, E. T. (2017). Development of Regionalized SPFs for Two-Lane Rural Roads in Pennsylvania. Accident Analysis & Prevention, 108, 343–353. https://doi.org/10.1016/j.aap.2017.08.035

Llopis-Castelló, D., Bella, F., Camacho-Torregrosa, F. J., & García, A. (2018). New Consistency Model Based on Inertial Operating Speed Profiles for Road Safety Evaluation. Journal of Transportation Engineering, Part A: Systems, 144(4), 04018006. https://doi.org/10.1061/jtepbs.0000126

Llopis-Castelló, D., Camacho-Torregrosa, F. J., & García, A. (2018). Calibration of the Inertial Consistency Index to Assess Road Safety on Horizontal Curves of Two-Lane Rural Roads. Accident. Analysis & Prevention, 118, 1–10. https://doi.org/10.1016/j.aap.2018.05.014

Llopis-Castelló, D., Findley, D. J., Camacho-Torregrosa, F. J., & García, A. (2019). Calibration of Inertial Consistency Models on North Carolina Two-Lane Rural Roads. Accident. Analysis and Prevention, 127, 236–245. https://doi.org/10.1016/j.aap.2019.03.013

Llopis-Castelló, D., Findley, D. J., & García, A. (2020). Comparison of the Highway Safety Manual Predictive Method with Safety Performance Functions Based on Geometric Design Consistency. Journal of Transportation Safety & Security, 1–22. https://doi.org/10.1080/19439962.2020.1738612

Llopis-Castelló, D., González-Hernández, B., Pérez-Zuriaga, A. M., & García, A. (2018). Speed Prediction Models for Trucks on Horizontal Curves of Two-Lane Rural Roads. Transportation Research Record: Journal of the Transportation Research Board, 2672(17), 72–82. https://doi.org/10.1177/0361198118776111

Maji, A., Sil, G., & Tyagi, A. (2018). 85th and 98th Percentile Speed Prediction Models of Car, Light, and Heavy Commercial Vehicles for Four-Lane Divided Rural Highways. Journal of Transportation Engineering, Part A: Systems, 144(5), 04018009. https://doi.org/10.1061/JTEPBS.0000136

Maji, A., & Tyagi, A. (2018). Speed Prediction Models for Car and Sports Utility Vehicle at Locations Along Four-Lane Median Divided Horizontal Curves. Journal of Modern Transportation, 26(4), 278–284. https://doi.org/10.1007/s40534-018-0162-1

Malaghan, V., Pawar, D. S., & Dia, H. (2020). Modeling Operating Speed Using Continuous Speed Profiles on Two-Lane Rural Highways in India. Journal of Transportation Engineering, Part A: Systems, 146(11), 04020124. https://doi.org/10.1061/jtepbs.0000447

Robertson, D. H., Hummer, J. E., & Nelson, D. C. (1994). Spot Speed Studies. In Manual of Transportation Engineering Studies. Institute of Transportation Engineers.

Saleem, T., & Persaud, B. (2017). Another Look at The Safety Effects of Horizontal Curvature on Rural Two-Lane Highways. Accident Analysis and Prevention, 106, 149–159. https://doi.org/10.1016/j.aap.2017.04.001

SIECA, S. de I. E. C. (2011). Manual centroamericano de normas para el diseño geométrico de carreteras (3.a ed.). Secretaría de Integración Económica Centroamericana. https://doi.org/10.1109/ICIP.2003.1246782

Sil, G., Maji, A., Nama, S., & Maurya, A. K. (2019). Operating Speed Prediction Model as a Tool for Consistency Based Geometric Design of Four-Lane Divided Highways. Transport, 34(4), 425–436. https://doi.org/10.3846/transport.2019.10715

Sil, G., Nama, S., Maji, A., & Maurya, A. K. (2018, January 7–11). The 85th Percentile Speed Prediction Model for Four-Lane Divided Highways in Ideal Free Flow Condition [Paper], 18–23. Transportation Research Board 97th Annual Meeting, Washington DC, United States. https://trid.trb.org/view/1495476

Wilches, F. J., Burbano, J. L. A., & Sierra, E. E. C. (2020). Vehicle Operating Speeds in Southwestern Colombia: An Important Database for The Future Implementation of Optimization Models for Geometric Design of Roads in Mountain Topography. Data in Brief, 32, 106210. https://doi.org/10.1016/j.dib.2020.106210

Xu, J., Lin, W., & Shao, Y. (2017). New Design Method for Horizontal Alignment of Complex Mountain Highways Based on “Trajectory-Speed” Collaborative Decision. Advances in Mechanical Engineering, 9(4), 1–18. https://doi.org/10.1177/1687814017695437

Xu, J., Lin, W., Wang, X., & Shao, Y. M. (2017). Acceleration and Deceleration Calibration of Operating Speed Prediction Models for Two-Lane Mountain Highways. Journal of Transportation Engineering, 143(7), 1–13. https://doi.org/10.1061/JTEPBS.0000050

Publicado

2021-04-05

Cómo citar

Delgado Martínez, D. E., Medina García, L., Ulate Zárate, J. M., & García Depestre, R. A. (2021). Modelos de velocidad de operación de carreteras rurales en terreno llano en Costa Rica. Enfoque UTE, 12(2), pp. 52 – 68. https://doi.org/10.29019/enfoqueute.732

Número

Sección

Misceláneos