Simulación de un deshidratador híbrido indirecto activo mediante el software ANSYS
DOI:
https://doi.org/10.29019/enfoqueute.771Palabras clave:
Deshidratación, solar, híbrida, CFD, simulaciónResumen
En la presente investigación se simula el comportamiento de un deshidratador hibrido indirecto activo con las condiciones atmosféricas de la ciudad de Riobamba, debido a que existe la necesidad de deshidratar frutas y verduras que en tiempos de sobreproducción no alcanzan a llegar al mercado. Para ello, se desarrolla una metodología que permitirá tener una buena aproximación de la solución. Se parte del diseño del prototipo de deshidratador para luego someterle a un proceso de mallado. Una vez que se tiene una malla de buena calidad, se seleccionan los modelos físicos que se van a utilizar en la simulación. Posteriormente, se ingresan las propiedades físicas y condiciones de contorno que corresponden a las condiciones climáticas de la ciudad de Riobamba para su posterior simulación. Simulado el prototipo, se verifica que la curva de variables físicas que se desean calcular se ha estabilizado y las curvas de residuales estén por debajo del valor seteado, si cumple con estos dos pasos se puede determinar que la simulación es correcta. Para la validación de los resultados obtenidos en la simulación se utilizan datos de una investigación similar. Es necesario realizar la simulación para poder determinar si el deshidratador diseñado puede trabajar en el rango óptimo de temperaturas para la deshidratación.
Descargas
Citas
Almada, M., Stella; M., Machaín-Singer; M., Pulfer, J. C. (2005). Guía de uso de secaderos solares para frutas, legumbres, hortalizas, plantas medicinales y carnes. Unesco. http://www.unesco.org/new/fileadmin/MULTIMEDIA/FIELD/Montevideo/pdf/ED-Guiasecaderosolar.pdf
Boughali, S.; Benmoussa, H.; Bouchekima, B.; Mennouche, D. (2009). Crop drying by indirect active hybrid solar – Electrical dryer in the eastern Algerian Septentrional Sahara. Solar Energy, 83(12): 2223–2232. https://doi.org/10.1016/j.solener.2009.09.006
Carrillo, A.; Gordillo, J.: Domínguez, F.; Cejudo, J. (2018). Simulation of a solar assisted counterflow tunnel dehydrator. Llevado a cabo en International Conference on Advances in Solar Thermal Food Processing. https://riuma.uma.es/xmlui/bitstream/handle/10630/15109/Carrillo-Sojo-Dominguez-Cejudo-CF18.pdf?sequence=1&isAllowed=y
Dhanushkodi, S.; Wilson, V. H.; Sudhakar, K. (2017). Mathematical modeling of drying behavior of cashew in a solar biomass hybrid dryer. Resource-Efficient Technologies, 3: 359-364. https://doi.org/10.1016/j.reffit.2016.12.002
El Hage, H.; Herez, A.; Ramadan, M.; Bazzi, H.; Khaled, M. (2018). An investigation on solar drying: A review with economic and environmental assessment. Energy, 157: 815-829. https://doi.org/https://doi.org/10.1016/j.energy.2018.05.197
Fito, P.; Andrés, A.; Barat, J.; & Albors, A. (2001). Introducción al secado de alimentos por aire caliente. Universitat Politècnica de València. https://gdocu.upv.es/alfresco/service/api/node/content/workspace/SpacesStore/e8b523c5-4970-4ae6-b2a3-86f576e81359/TOC_4092_02_01.pdf?guest=true
Guevara, A.; Salas, J. (2017). Diseño y construcción de un deshidratador solar para fresa. Jovenes en a Ciencia, 03(1): 114-119.
Ibarz, A.; Barbosa-Cánovas, G. (2000). Operaciones unitarias en la ingeniería de alimentos: Mundi-Prensa.
Kabeel, A. E., Abdelgaied, M. (2016). Performance of novel solar dryer. Process Safety and Environmental Protection, 102: 183–189. https://doi.org/10.1016/j.psep.2016.03.009
Llumiquinga, P.; Suquillo, B. (2015). Diseño y construcción de un prototipo de deshidratador de frutas de capacidad de 12 Kg con circulación de ire forzado utilizando resistencias eléctricas. Universidad Politécnica Salesiana Sede Quito. http://dspace.ups.edu.ec/bitstream/123456789/5081/1/UPS-CYT00109.pdf
López, E., Méndez, L.; Rodríguez, J. (2013). Efficiency of a hybrid solar-gas dryer. Solar Energy, 93: 23–31. https://doi.org/10.1016/j.solener.2013.01.027
Maiti, S.; Patel, P.; Vyas, K.; Eswaran, K.; Ghosh, P. K. (2011). Performance evaluation of a small scale indirect solar dryer with static reflectors during non-summer months in the Saurashtra region of western India. Solar Energy, 85(11): 2686–2696. https://doi.org/https://doi.org/10.1016/j.solener.2011.08.007
Martínez, J.; Vidal, R.; Grado, J.; & Gándara, J. (2013). Deshidratación de alimentos utilizando energía solar térmica. Cultura Científica y Tecnológica, 50: 99–107. http://148.210.132.19/ojs/index.php/culcyt/article/view/932/868
Mendoza, J.; Insuasti, R.; Barrera, O.; & Navarro, M. (2020). Design and simulation of an Indirect Mixed: 107-124. https://doi.org/10.18502/keg.v5i2.6227
Misha, S.; Abdullah, A. L.; Tamaldin, N.; Rosli, M. A. M.; Sachit, F. A. (2020). Simulation CFD and experimental investigation of PVT water system under natural Malaysian weather conditions. Energy Reports, 6: 28-44. https://doi.org/https://doi.org/10.1016/j.egyr.2019.11.162
Pandal Blanco, A. (2019). Modelado euleriano de flujo bifasico para el calculo CFD de chorros diesel: Editorial Reverte. https://elibro.net/es/lc/unir/titulos/171243
Potter, M. C.; Wiggert, D. C.; Ramadan, B. H. (2015). Mecánica de Fluidos . CENGAGE Learning.
Simbaña, R. (2016). Análisis y simulación del proceso de deshidratado de frutas utilizando un prototipo deshidrtador con energía solar. Universidad Politécnica Salesiana Sede Quito. http://dspace.ups.edu.ec/bitstream/123456789/5081/1/UPS-CYT00109.pdf
Tegenaw, P. D.; Gebrehiwot, M. G.; & Vanierschot, M. (2019). On the comparison between computational fluid dynamics (CFD) and lumped capacitance modeling for the simulation of transient heat transfer in solar dryers. Solar Energy, 184: 417-425. https://doi.org/https://doi.org/10.1016/j.solener.2019.04.024
Tiupul, P., & Arévalo, M. (2019). Anuario climatológico año 2019. Escuela Superior Politécnica de Chimborazo.
Varun, Sunil, Sharma, A.; Sharma, N. (2012). Construction and Performance Analysis of an Indirect Solar Dryer Integrated with Solar Air Heater. Procedia Engineering, 38: 3260-3269. https://doi.org/https://doi.org/10.1016/j.proeng.2012.06.377
Versteeg, H.; Malalasekera, W. (2007). An Introduction to Computational Fluid Dynamics: Pearson Prentice Hall.
Yumbillo, B. (2020). Diseño de un prototipo de un secador solar para frutilla (Fragaria vesca) utilizando modelos matemáticos. Escuela Superior Politécnica de Chimborazo.
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Los Autores
Esta obra está bajo una licencia Creative Commons Reconocimiento 3.0 Unported.
Los artículos e investigaciones publicadas por la Universidad UTE, se realizan en régimen de Acceso Abierto [Open Access] en formato electrónico. Esto significa que todo el contenido está disponible de forma gratuita sin costo para el usuario o su institución. Los usuarios pueden leer, descargar, copiar, distribuir, imprimir, buscar o enlazar los textos completos de los artículos, o usarlos para cualquier otro propósito legal, sin necesidad de pedir permiso previo al editor o al autor. Esto está de acuerdo con la definición de acceso abierto de la Iniciativa de Acceso Abierto de Budapest (BOAI). Al enviar un artículo a cualquiera de las revistas científicas de la Universidad UTE, el o los autores aceptan estas condiciones.
La UTE aplica la licencia Creative Commons Attribution (CC-BY) a los artículos de sus revistas científicas. En virtud de esta licencia de acceso abierto, como autor usted acuerda que cualquier persona puede reutilizar su artículo en su totalidad o en parte para cualquier propósito, de forma gratuita, incluso para fines comerciales. Cualquiera puede copiar, distribuir o reutilizar el contenido siempre y cuando el autor y la fuente original estén correctamente citados. Esto facilita la libertad de reutilización y también asegura que el contenido pueda ser extraído sin barreras para necesidades de investigación.
Esta obra está bajo una Creative Commons Attribution 3.0 International (CC BY 3.0).
Además, la Revista Enfoque UTE garantiza y declara que los autores conservan siempre todos los derechos de autor y todos los derechos de publicación sin restricciones [© Los Autores]. El reconocimiento (BY) permite cualquier explotación de la obra, incluyendo una finalidad comercial, así como la creación de obras derivadas, la distribución de las cuales también está permitida sin ninguna restricción.