Concurrent design of a lower limb rehabilitation mechanism

  • José Saúl Muñoz Reina IPN
  • Miguel Gabriel Villarreal Cervantes Instituto Politécnico Nacional
  • Leonel German Corona Ramirez Instituto Politécnico Nacional
  • Robero Castro Medina Instituto Politécnico Nacional
Keywords: rehabilitation system, concurrent design, synthesis of mechanisms, design for control

Abstract

The rehabilitation given by robotic systems is a choice for minimizing the recovery time of a patient and boost their muscular and skeletal capacity on a limb damaged. However, the high cost of these systems limits patients to receive these kind of treatments. The systems of one degree of freedom are a low cost alternative to health care and rehab at home.

In this paper, the structural design of an 8-link mechanism for the rehabilitation of lower limbs is performed, based on the approach and solution of an optimization problem in which certain objectives are met, such as dimensional synthesis, and the minimizing of torque to make control easier.

Downloads

Download data is not yet available.

References

Balli, S. S., & Chand, S. (2002). Transmission angle in mechanisms (Triangle in mech). Mechanism and Machine Theory, 37(2), 175-195.
Brosseau, L., Milne, S., Wells, G., Tugwell, P., Robinson, V., Casimiro, L., ... & Drouin, H. (2004). Efficacy of continuous passive motion following total knee arthroplasty: a metaanalysis. The journal of rheumatology, 31(11), 2251-2264.
Guzmán Valdivia, C. H., Carrera Escobedo, J. L., Blanco Ortega, A., Oliver Salazar, M. A., & Gómez Becerra, F. A. (2014). Diseño y control de un sistema interactivo para la rehabilitación de tobillo: TobiBot. Ingeniería mecánica, tecnología y desarrollo, 5(1), 255-264.
Ji, Z., & Manna, Y. (2008). Synthesis of a pattern generation mechanism for gait rehabilitation. Journal of Medical Devices, 2(3), 031004.
Li, Q., Zhang, W. J., & Chen, L. (2001). Design for control-a concurrent engineering approach for mechatronic systems design. IEEE/ASME transactions on mechatronics, 6(2), 161-169
Mezura-Montes, E., Coello, C. A. C., & Tun-Morales, E. I. (2004). Simple feasibility rules and differential evolution for constrained optimization. In Mexican International Conference on Artificial Intelligence (pp. 707-716). Springer, Berlin, Heidelberg.
J. S. Muñoz-Reina, L. G. Corona-Ramírez y M. G. Villarreal-Cervantes. (2017). Análisis cinemático y simulación de un mecanismo para rehabilitación de miembro inferior. 25/10/2018, de Sociedad Mexicana de Ingeniería Mecánica Sitio web: http://revistasomim.net/congreso2017/articulos/A1_178.pdf
OMS. (2011). Informe mundial sobre la discapacidad (Resumen). Recuperado de http://www.who.int/disabilities/world_report/2011/summary_es.pdf?ua=1 (accedido el 19/10/ 2017).
Pantoja-García, J. S., Villarreal-Cervantes, M. G., González-Robles, J. C., & Cervantes, G. S. (2017). Síntesis óptima de un mecanismo para la marcha bípeda utilizando evolución diferencial. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 33(1-2), 138-153.
Rosero, E. E., Martínez, R., & Galvis, E. (2011). diseño y construcción de una máquina de Movimiento Pasivo Continuo para la Terapia de Rodilla. Ingeniería y Competitividad, 3(2), 56-64.
Shao, Y., Xiang, Z., Liu, H., & Li, L. (2016). Conceptual design and dimensional synthesis of cam-linkage mechanisms for gait rehabilitation. Mechanism and Machine Theory, 104, 31-42.
Storn, R., & Price, K. (1997). Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. Journal of global optimization, 11(4), 341-359.
Tsuge, B. Y., Plecnik, M. M., & McCarthy, J. M. (2016). Homotopy directed optimization to design a six-bar linkage for a lower limb with a natural ankle trajectory. Journal of Mechanisms and Robotics, 8(6), 061009.
Tsuge, B. Y., & McCarthy, J. M. (2015, August). Synthesis of a 10-bar linkage to guide the gait cycle of the human leg. In ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (pp. 1-7). American Society of Mechanical Engineers.
Villarreal-Cervantes, M. G., Cruz-Villar, C. A., Alvarez-Gallegos, J., & Portilla-Flores, E. A. (2010). Differential evolution techniques for the structure-control design of a five-bar parallel robot. Engineering Optimization, 42(6), 535-565.
Published
2018-12-21
How to Cite
Muñoz Reina, J., Villarreal Cervantes, M., Corona Ramirez, L., & Castro Medina, R. (2018). Concurrent design of a lower limb rehabilitation mechanism. Enfoque UTE, 9(4), pp. 57 - 68. https://doi.org/https://doi.org/10.29019/enfoqueute.v9n4.399
Section
Automation and Control, Mechatronics, Electromechanics, Automotive