Enzymatic browning control in cut apples (Red delicious) through a system of active packaging
DOI:
https://doi.org/10.29019/enfoqueute.v8n2.158Keywords:
Polyphenoloxidase., 4-hexylresorcinol., ascorbic acidAbstract
Enzymatic browning is one of the most relevant mechanisms of deterioration that take place in fresh-cut fruit and vegetables, as a consequence of the activity of the polyphenol oxidase enzyme on the phenolic compounds release after cellular lysis . This work is focused on the reduction of these enzymatic activity by an active packaging technology, which make use of a material that incorporates antioxidant active agents. Thus, films of ethylene-vynil alcohol copolymer (EVOH) containing a typical food antioxidant, such as ascorbic acid and a polyphenol oxidase-inhibiting agent, the 4-hexylresorcinol have been developed and used to wrap apple slices. The evolution of color, the enzymatic activity and the kinetic of agents release to food simulants were monitored. The results showed an improvement of apple slice color stability and a reduction of the enzymatic activity. The film with 10 % of agents in 3/1 ratio (4-hexylresorcinol/ascorbic acid) provided the best results.
Downloads
References
Cárdenas-Pérez, S., Méndez Méndez, J.V., Chanona-Pérez, J.J., Zdunek, A., Guemes-Vera, N., Calderón-Domínguez, G., Rodríguez González, F. (2017). Prediction of the nanomechanical properties of apple tissue during its ripening process from its firmness, color and microstructural parameters. Innovative Food Science and Emerging Technologies, 39, 79-87
Cortellino, G., Gobbi, S., Bianchi, G., Rizzolo, A. (2015). Modified atmosphere packaging for shelf life extensión of fresh-cut apples. Trends in Food Science Technology, 46(2), 320-330.
Chukwan, T., Gary M, S., Judy, J., Diane M, B. (2017). The effect of high pressure processing on clingstone and freestone peach cell integrity and enzymatic browning reactions. Innovative Food Science and Emerging Technologies, 39, 230-240.
Landim, APM.,Barbosa, MINJ., Barbosa, JL. (2016). Influence of osmotic dehydration on bioactive compounds, antioxidant capacity, color and texture of fruits and vegetables: a review, 46(10), 1714-1722
Lee, EJ. (2014). Major Metabolites Involved in Skin Blackening of Niitaka Pear Stored under Cold Temperature. Korean Journal of Horticultural Science and Technology, 32(3), 359-365.
Linlin, L., Min, Z., Benu, A., Zhongxue, G. (2016). Recent advances in pressure modification-based preservation technologies applied to fresh fruits and vegetables. Food Reviews International, 33(5), 538-559.
Min, T., Xie, J., Zheng, ML., Yi, Y., Hou, WF., Wang, LM., Ai, YW., Wang, HX. (2017). The effect of different temperatures on browning incidence and phenol compound metabolism in fresh-cut lotus (Nelumbo nucifera G.) root. Postharvest Biology and Technology, 123, 69-76.
Musetti, A., Tagliazucchi, D., Montevecchi, G., Verzelloni, E., Antonelli, A., & Fava, P. (2015). Characterization of a combined treatment with alpha-Lipoic acid for the control of enzymatic browning in fresh-cut golden delicious apples. Journal of Food Processing and Preservation, 39(6), 681-687.
Pshenichnyuk, SA.,Modelli, A., Lazneva,EF.,Komolov,AS. (2016). Hypothesis for the Mechanism of Ascorbic Acid Activity in Living Cells Related to Its Electron-Accepting Properties. Journal of Physical Chemistry A, 120(17),2667-2676.
Quevedo, R., Diaz, O., Valencia, E., Pedreschi, F., Bastias, JM., Siche, R. (2016). Differences Between the Order Model and the Weibull Model in the Modeling of the Enzymatic Browning. Food and Bioprocess Technology, 9(11), 1961-1967.
Paillart, MJM., Van der Vossen, JMBM., Lommen, E., Levin, E., Otma, EC., Snels, JCMA., Woltering, EJ. (2016). Organic acids produced by lactic acid bacteria (Leuconostoc sp.) contribute to sensorial quality loss in modified-atmosphere-packed fresh- cut iceberg lettuce. Acta Horticulturae, 1141, 289-296.
Published
How to Cite
Issue
Section
License
The articles and research published by the UTE University are carried out under the Open Access regime in electronic format. This means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access. By submitting an article to any of the scientific journals of the UTE University, the author or authors accept these conditions.
The UTE applies the Creative Commons Attribution (CC-BY) license to articles in its scientific journals. Under this open access license, as an author you agree that anyone may reuse your article in whole or in part for any purpose, free of charge, including commercial purposes. Anyone can copy, distribute or reuse the content as long as the author and original source are correctly cited. This facilitates freedom of reuse and also ensures that content can be extracted without barriers for research needs.
This work is licensed under a Creative Commons Attribution 3.0 International (CC BY 3.0).
The Enfoque UTE journal guarantees and declares that authors always retain all copyrights and full publishing rights without restrictions [© The Author(s)]. Acknowledgment (BY): Any exploitation of the work is allowed, including a commercial purpose, as well as the creation of derivative works, the distribution of which is also allowed without any restriction.