Experimental study on the low power CO2 laser cutting of natural fibers reinforced plastic composite
DOI:
https://doi.org/10.29019/enfoqueute.v11n3.572Keywords:
Laser cut; composite; natural fibers, Response Surface; surface roughness; thermal affectationAbstract
The application of plastics reinforced with natural fibers in the industry can be increased using faster and more flexible technologies, such as laser cutting. The anisotropic nature and the degree of combustion of natural fibers in these types of compounds make laser processing very challenging. This study deals with the cutting performance of a low power CO2 laser to cut polymer composite plates (matrix of polyester and epoxy resin) reinforced with natural fibers (Abaca and rice husk) with an average thickness of 3 mm. An experimental DOE design and an Anova analysis of variance were used to determine the significant and influential parameters in the quality of cut and the thermal effect on the material. The processing parameters were the cutting power, cutting speed and type of thermoset matrix. The cuts with a minimum zone affected by heat, of approximately 600 mm and a minimum Ra of 3.18 μm, were achieved by working with 76 W and 14 mm/s of power and cutting speed respectively in the composite material of reinforced polyester matrix with rice fiber.
Downloads
References
Altin Karataş, M., & Gökkaya, H. (2018). A review on machinability of carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP) composite materials. Defence Technology, 14(4), 318-326. doi:https://doi.org/10.1016/j.dt.2018.02.001
Çengel, Y. A., & Ghajar, A. J. (2011). Transferencia de calor y masa. Fundamentos y.
Choudhury, I., & Shirley, S. (2010). Laser cutting of polymeric materials: an experimental investigation. Optics & Laser Technology, 42(3), 503-508. doi:https://doi.org/10.1016/j.optlastec.2009.09.006
Choudhury, I. A., & Chuan, P. C. (2013). Experimental evaluation of laser cut quality of glass fibre reinforced plastic composite. Optics and Lasers in Engineering, 51(10), 1125-1132. doi:https://doi.org/10.1016/j.optlaseng.2013.04.017
Davim, J. P., Barricas, N., Conceicao, M., & Oliveira, C. (2008). Some experimental studies on CO2 laser cutting quality of polymeric materials. Journal of materials processing technology, 198(1-3), 99-104. doi:https://doi.org/10.1016/j.jmatprotec.2007.06.056
Davim, J. P., Oliveira, C., Barricas, N., & Conceição, M. (2008). Evaluation of cutting quality of PMMA using CO2 lasers. The International Journal of Advanced Manufacturing Technology, 35(9), 875-879. doi:10.1007/s00170-006-0766-1
Dewil, R., Vansteenwegen, P., & Cattrysse, D. (2016). A review of cutting path algorithms for laser cutters. The International Journal of Advanced Manufacturing Technology, 87(5-8), 1865-1884. doi:https://doi.org/10.1007/s00170-016-8609-1
ISO, E. 4288. 1996. Geometrical product specifications (GPS). Surface texture. Profile method. Rules and procedures for the assessment of surface texture. International Organization for Standardization, Geneva.
ISO Standard. 5436-1: 2000-03 (E), Geometrical Product Specifications (GPS)-Surface texture: Profile method. Measurement standards-Part, 1.
ISO UNE, E. 1302: 2002 Especificación geométrica de productos (GPS). Indicación de la calidad superficial en la documentación técnica de productos.(ISO 1302: 2002).
Kurt, M., Kaynak, Y., Bagci, E., Demirer, H., & Kurt, M. J. T. I. J. o. A. M. T. (2009). Dimensional analyses and surface quality of the laser cutting process for engineering plastics. 41(3-4), 259-267.
Lamikiz, A., de Lacalle, L. L., Sanchez, J., Del Pozo, D., Etayo, J., & Lopez, J. (2005). CO2 laser cutting of advanced high strength steels (AHSS). Applied Surface Science, 242(3-4), 362-368. doi:https://doi.org/10.1016/j.apsusc.2004.08.039
Lohr Rodríguez, C. (2011). Mejoramiento de la calidad del borde cortado en PMMA por láser de CO2.
Patel, P., Sheth, S., & Patel, T. (2016). Experimental Analysis and ANN Modelling of HAZ in Laser Cutting of Glass Fibre Reinforced Plastic Composites. Procedia Technology, 23, 406-413. doi:https://doi.org/10.1016/j.protcy.2016.03.044
Peças, P., Carvalho, H., Salman, H., & Leite, M. (2018). Natural Fibre Composites and Their Applications: A Review. Journal of Composites Science, 2(4), 66. doi:https://doi.org/10.3390/jcs2040066
Perez, C., Paredes, J., Lalaleo, E., Arroba, C., & Nuñez, D. (2018). ANÁLISIS NUMÉRICO/EXPERIMENTAL DE LAS PROPIEDADES MECÁNICAS DEL COMPUESTO DE MATRIZ POLIÉSTER REFORZADO CON CASCARILLA DE ARROZ. Ciencia, 19(4).
Pou, J., Boutinguiza, M., Quintero, F., Lusquinos, F., Soto, R., & Pérez-Amor, M. (2001). Comparative study of the cutting of car interior trim panels reinforced by natural fibers. Journal of Laser Applications, 13(3), 90-95. doi:https://doi.org/10.2351/1.1373436
Powell, J. (1993). CO2 laser cutting (Vol. 214): Springer.
Radovanovic, M., & Madic, M. (2011). Experimental investigations of CO2 laser cut quality: a review. Nonconventional Technologies Review, 4, 35-42.
Ramírez, A., Pascual, J., Lasema, J., Moya, M., Zapatero, J., & Fernández, T. (1998). Efecto de las condiciones de corte de un láser de Nd: YAG sobre la estructura y microcomposición de la superficie de aceros inoxidables. Revista de metalurgia, 34(2), 220-226.
Riveiro, A., Quintero, F., Lusquiños, F., Del Val, J., Comesaña, R., Boutinguiza, M., & Pou, J. (2012). Experimental study on the CO2 laser cutting of carbon fiber reinforced plastic composite. Composites Part A: Applied Science and Manufacturing, 43(8), 1400-1409. doi:https://doi.org/10.1016/j.compositesa.2012.02.012
Riveiro, A., Quintero, F., Lusquiños, F., del Val, J., Comesaña, R., Boutinguiza, M., & Pou, J. (2017). Laser cutting of Carbon Fiber Composite materials. Procedia Manufacturing, 13, 388-395. doi:https://doi.org/10.1016/j.promfg.2017.09.026
Yashas Gowda, T., Sanjay, M., Subrahmanya Bhat, K., Madhu, P., Senthamaraikannan, P., & Yogesha, B. (2018). Polymer matrix-natural fiber composites: An overview. Cogent Engineering, 5(1), 1446667.
Zaeh, M. F., Byrne, G., & Stock, J. W. (2017). Peak stress reduction in the laser contouring of CFRP. CIRP Annals, 66(1), 249-252. doi:https://doi.org/10.1016/j.cirp.2017.04.126
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Enfoque UTE
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
The articles and research published by the UTE University are carried out under the Open Access regime in electronic format. This means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access. By submitting an article to any of the scientific journals of the UTE University, the author or authors accept these conditions.
The UTE applies the Creative Commons Attribution (CC-BY) license to articles in its scientific journals. Under this open access license, as an author you agree that anyone may reuse your article in whole or in part for any purpose, free of charge, including commercial purposes. Anyone can copy, distribute or reuse the content as long as the author and original source are correctly cited. This facilitates freedom of reuse and also ensures that content can be extracted without barriers for research needs.
This work is licensed under a Creative Commons Attribution 3.0 International (CC BY 3.0).
The Enfoque UTE journal guarantees and declares that authors always retain all copyrights and full publishing rights without restrictions [© The Author(s)]. Acknowledgment (BY): Any exploitation of the work is allowed, including a commercial purpose, as well as the creation of derivative works, the distribution of which is also allowed without any restriction.