Comparative analysis of the asphaltene stabilizing efficiency of Anacardium occidentale peel oil and commercial products

Authors

DOI:

https://doi.org/10.29019/enfoqueute.v11n3.643

Keywords:

Anacardium occidentale; crude oil; asphaltenes; inhibitor; flocculation

Abstract

The research objective was to compare the inhibiting and stabilizing efficiency of asphaltenes from Anacardium occidentale (CNSL) husk oil mixtures in diesel and commercial dispersant products, to evaluate the oil as an alternative anti-asphaltenes chemical treatment of crude oil. The precipitation flocculation onset with n-heptane and the dispersion point by addition of xylene were determined, both by direct observation of asphaltenes floc formation under an optical microscope. The experimental design used was factorial, with four response variables (flocculation onset, inhibitory activity, instability index and stabilization efficiency) and two experimental factors (product and dose). Five products with CNSL and three commercial products, all in doses 2, 4, 6 and 8 µl in 10 ml of a medium crude oil sample, were evaluated. The statistical analysis was based on multifactorial ANOVA and Fisher's minimal significant difference test (LSD) with α = 0.05. It was obtained that the two experimental factors significantly influenced the individual response variables and also their interactions. The products with CNSL were more efficient as inhibitors and the commercial ones more efficient as stabilizers.

Downloads

Download data is not yet available.

References

Abrahamsen, E. L. (2012). Organic Flow Assurance: Asphaltene Dispersant/Inhibitor Formulation Development through Experimental Design. Stavanger: Schlumberger Limited.

Alibaba. (2020). Cashew Nut Shell Oil Price. Disponible en: http://bit.do/cashewoilprice

Alrashidi, H., y Nasr-El-Din, H. A. (2017). Evaluation of Eco Friendly Bio-Oil Dispersants on the Inhibition of Asphaltene Precipitation in a Kuwaiti Crude Oil. In the Abu Dhabi International Petroleum Exhibition & Conference, SPE-188232-MS. Abu Dhabi. doi: 10.2118/188232-ms

Alrashidi, H.; Afra, S. y Nasr-El-Din, H. A. (2019). Application of Natural Fatty Acids as Asphaltenes Solvents with Inhibition and Dispersion Effects: A Mechanistic Study. Journal of Petroleum Science and Engineering, 172, 724-730. doi: 10.1016/j.petrol.2018.08.066

Ashoori, S.; Sharifi, M.; Masoumi, M. y Salehi, M. M. (2017). The Relationship between SARA Fractions and Crude Oil Stability. Egyptian Journal of Petroleum, 26, 209–213. doi: 10.1016/j.ejpe.2016.04.002

ASTM D287. (2012). Standard Test Method for API Gravity of Crude Petroleum and Petroleum Products (Hydrometer Method). USA: American Society of Testing Materials.

ASTM D2007. (2011). Standard Test Method for Characteristic Groups in Rubber Extender and Processing Oils and Other Petroleum-Derived Oils by the Clay-Gel Absorption Chromatographic Method. USA: American Society of Testing Materials.

ASTM D2196. (2018). Standard Test Methods for Rheological Properties of Non-Newtonian Materials by Rotational Viscometer. USA: American Society of Testing Materials.

ASTM D4007. (2016). Standard Test Method for Water and Sediment in Crude Oil by the Centrifuge Method (Laboratory Procedure). USA: American Society of Testing Materials.

Bello, Y. B.; Manzano, J. R. y Marín, T. D. (2015). Análisis comparativo de la eficiencia dispersora de asfaltenos de productos a base de aceite de coco (Cocus nucifera) como componente activo y dispersantes comerciales aplicados a muestras de petróleo del Campo el Furrial. Revista Tecnológica Espol – RTE, 28(2), 51-61. Estado Monagas, Venezuela.

Delgado, J.G. (2015). Precipitación de asfaltenos. Mérida, Venezuela: Universidad de los Andes.

Elochukwu, O. H.; Saaid, I. M. y Pilus, R. M. (2014). Organic Deposit Remediation Using Environmentally Benign Solvents: A Review. ARPNJournal of Engineering and Applied Sciences, 9(10), 1930-1935.

Gabrienko, A. A.; Martyanov, O. N. y Kazarian, S. G. (2015). Effect of Temperature and Composition on the Stability of Crude Oil Blends Studied with Chemical Imaging In Situ. Energy & Fuel, 29(11), 7114-7123. doi: 10.1021/acs.energyfuels.5b01880

Ghloum, E. F.; Rashed, A. M.; Safa, M. A.; Sablit, R. C. y Al-Jouhar, S. M. (2019). Mitigation of Asphaltenes Precipitation Phenomenon Via Chemical Inhibitors. Journal of Petroleum Science and Engineering, 175, 495–507. doi: 10.1016/j.petrol.2018.12.071

Guevara, S.; Parra, M.; Malavé, V.; Castillo, L. y Márquez, I. (2018). Efecto de la implementación del método de levantamiento artificial por gas sobre la composición del crudo del campo El Furrial. Revista Tecnológica Espol – RTE, 31(1), 1-12,

Guzmán, R.; Ancheyta, J.; Trejo, F. y Rodríguez, S. (2017). Methods for Determining Asphaltene Stability in Crude Oils. Fuel, 188, 530–543. doi: 10.1016/j.fuel.2016.10.012

Hasanvand, M. Z.; Montazeri, M.; Salehzadeh, M.; Amiri, M. y Fathinasab, M. (2018). A Literature Review of Asphaltene Entity, Precipitation, and Deposition: Introducing Recent Models of Deposition in the Well Column. Journal of Oil, Gas and Petrochemical Sciences, 1(3), 83-89. doi: org/10.30881/jogps.00016

Kanehashi, S.; Masuda, R.; Yokoyama et al. (2015). Development of a Cashew Nut Shell Liquid (CNSL)-based Polymer for Antibacterial Activity. Journal of Applied Polymer Science, 132(45), 42725-42734. doi: 10.1002/APP.42725

Kraiwattanawong, K.; Fogler, H. S.; Gharfeh, S. G. et al. (2009). Effect of Asphaltene Dispersants on Aggregate Size Distribution and Growth. Energy & Fuels, 23, 1575–1582. doi: 10.1021/ef800706c

Kuang, J.; Meléndez-Álvarez, A. A.; Yarbrough, J. et al. (2019). Assessment of the Performance of Asphaltene Inhibitors Using a Multi-Section Packed Bed Column. Fuel, 241, 247–254. doi: 10.1016/j.fuel.2018.11.059

Kusrini, E.; Mawarni, D. P.; Mamat, M.; Prasetyanto, E. A.; Usman, A. (2018). Comparison of Antibacterial Activity in Ethanol Extract and Essential Oil of Citrus sinensis (L.) Peels Obtained by Sohxlet and Distillation Methods. In The International Fundamentum Sciences Symposium, Terengganu. Malaysia. doi: 10.1088/1757-899X/440/1/012028

Li, H.; Zhang, J.; Xu, Q. et al. (2020). Influence of Asphaltene on Wax Deposition: Deposition Inhibition and Sloughing. Fuel, 266, 117047-117055. doi: 10.1016/j.fuel.2020.117047

Lim, S. H.; Go, K. S.; Kwon, E. H.; Nho, N. S., y Lee, J. G. (2020). Investigation of Asphaltene Dispersion Stability in Slurry-Phase Hydrocracking Reaction. Fuel, 271, 117509- 117517. doi: 10.1016/j.fuel.2020.117509

Mardani, E.; Mokhtari, B. y Soltani, B. (2018). Comparison of the Inhibitory Capacity of Vegetable Oils, and their Nonionic Surfactants on Iran Crude Oil Asphaltene Precipitation Using Quartz Crystal Microbalance. Petroleum Science and Technology, 36(11), 744-749. doi: 10.1080/10916466.2018.1445103

Marín, T., Marcano, S. y Febres, M. (2016). Evaluación del aceite de Jatropha curcas como aditivo dispersante de asfaltenos en un crudo del campo el Furrial, Venezuela. Ingeniería–Revista Académica de la Facultad de Ingeniería, 20(2), 98-107.

Marín, T. (2019). El aceite de coco (Cocos nucifera) como estabilizante de asfaltenos en un crudo del Estado Monagas, Venezuela: Efecto de la temperatura. Ingeniería y Desarrollo, 37(2), 290-305.

Martins, R. G.; Martins, L. S. y Santos, R. G. (2018). Effects of Short-Chain n-Alcohols on the Properties of Asphaltenes at Toluene/Air and Toluene/Water Interfaces. Colloids Interfaces, 2(13), 1-9. doi: 10.3390/colloids2020013

Meléndez-Álvarez, A. A.; Garcia-Bermudes, M.; Tavakkoli, M. et al. (2016). On the Evaluation of the Performance of Asphaltene Dispersants. Fuel, 179, 210–220. doi: 10.1016/j.fuel.2016.03.056

Nunes, M.; Yuan, L. L.; Weingart, D. et al. (2019). The Use of Cashew Nut Shell Liquid (CNSL) in PP/HIPS Blends: Morphological, Thermal, Mechanical and Rheological Properties. Materials, 12, 1904-1928. doi: 10.3390/ma12121904

Pereira, J. C.; Delgado-Linares, J.; Briones, A. et al. (2011). The Effect of Solvent Nature and Dispersant Performance on Asphaltene Precipitation from Diluted Solutions of Instable Crude Oil. Petroleum Science and Technology, 29(23), 2432-2440. doi: 10.1080/10916461003735061

Quiminet (2020). Precios de dispersantes de asfaltenos. Disponible en: http://bit.do/asphaltenesprice

Riss, H.; Carniel, T. K.; Farina, C. F. et al. (2015). Extração de óleo de chia (Salvia hispanica L.) via Sohxlet. In XI Congresso Brasileiro de Engenharia Química em Iniciação Científica. Campinas, Brasil.

Rodríguez, O.J. (2011). Evaluación de la productividad en el campo el Furrial posterior a las estimulaciones matriciales no reactivas (Tesis de pregrado). Caracas, Venezuela: Universidad Central.

Sánchez, L., Chávez, J., Ríos, L. A., y Cardona, S. M. (2015). Evaluación de un Antioxidante Natural extraído del Marañón (Anacardium occidentale L.) para mejorar la Estabilidad Oxidativa del Biodiesel de Jatropha. Información Tecnológica, 26(6), 19-30. doi: 10.4067/S0718-07642015000600004

Silva, F. B.; Guimarães, M.; Seidl, P. R., y García, M. (2013). Extraction and Characterization (compositional and thermal) of Asphaltenes from Brazilian Vacuum Residues. Brazilian Journal of Petroleum and Gas, 7(3), 107-118. doi: 10.5419/bjpg2013-0009

Taiwo, E. A. (2015). Cashew Nut Shell Oil — A Renewable and Reliable Petrochemical Feedstock. In Advances in Petrochemicals. doi: 10.5772/61096

Zeng, C.; Brunner, M.; Li, H.; Zhang, D. y Atkin, R. (2019). Dissolution and Suspension of Asphaltenes with Ionic Liquids. Fuel, 238, 1

Published

2020-07-01

How to Cite

Arriojas Tocuyo, D. D. J., & Marín Velásquez, T. D. (2020). Comparative analysis of the asphaltene stabilizing efficiency of Anacardium occidentale peel oil and commercial products. Enfoque UTE, 11(3), pp. 111 – 123. https://doi.org/10.29019/enfoqueute.v11n3.643

Issue

Section

Miscellaneous