Removal of Heavy Metals (Cr+6, Ni, Zn) from Leachates of the Sanitary Landfill of the City of Veracruz, Mexico with Reactive Permeable Silica Sand Barriers
DOI:
https://doi.org/10.29019/enfoqueute.756Keywords:
Leachates, Contaminants, Heavy Metals, Permeable Reactive Barriers, Remediation, Porous MediumAbstract
The use of Permeable Reactive Barriers as a material for the removal of heavy metals from the leachates of the Sanitary Landfills has been verified for various materials, the Silica Sand from the coasts of the municipality of Alvarado Veracruz in Mexico have the characteristics of size and composition Required to be used for this purpose, samples of leachate were collected from the Sanitary Landfill of the City of Veracruz and the concentrations of Ni, Cr+6 and Zn were determined were respectively 0.0818, 0.186 and 0.224 mg/l, three columns were built of acrylic and were filled with 20, 30 and 40 cm of washed and dried Silica Sand, treated and stabilized leachate was passed through the porous medium at a flow of 1.7 ml/s, taking samples at 40.75, 115 , 165 and 235 seconds for each column and the efficiency for the removal of these heavy metals was measured and a significant reduction of these pollutants was found, ranging from 76 to 93%. for Nickel, from 44 to 81 % in the case of hexavalent Chromium and from 65 to 92% for Zinc for a maximum time of 235 seconds, which indicates that this material can be used in the remediation of leachate.
Downloads
References
Asokbunyarat, V., Lens, P., y Annachhatre A. (2017). Chapter 3 Permeable Reactive Barriers for Heavy Metal Removal. Sustainable Heavy Metal Remediation, Environmental Chemistry for a Sustainable World 8, Rene, E.R., Sahinkaya, E., Lewis, A., Lens, P. (Eds.). Volume 1: Principles and Processes: 65-100. https://doi.org/10.1007/978-3-319-58622-9_3
Botello, A., Rendón von Osten, J., Gol -Boucht, G., y Agraz Hernández, C. (2005). Golfo de México. Contaminación e impacto ambiental: Diagnóstico y tendencias. 2da edición.
Cordeiro Andrade, D., y Vieira dos Santos, E. (2020). Combination of electrokinetic remediation with permeable reactive barriers to remove organic compounds from soils, Current Opinion in Electrochemistry, 22: 136-144. https://doi.org/10.1016/j.coelec.2020.06.002
Denkhaus, E., y Salnikow, K. (2002). Nickel essentiality, toxicity, and carcinogenicity. Critical Reviews in Oncology/Hematology, 42(1): 35-56. https://doi.org/10.1016/S1040-8428(01)00214-1
Díaz, M., Campos, R., Zamora, S., y Salgado, R. (2018) Cuantificación experimental del contenido masivo de SiO2 en depósitos eólicos de arena en una región de la cuenca del rio Papaloapan, Veracruz, México. Ingeniería Revista Académica de la Facultad de Ingeniería, Universidad Autónoma de Yucatán, 22(1). https://bit.ly/3d4vnpp
Dirección General de Desarrollo Minero (2017). Perfil del mercado del Sílice, Secretaría de Economía, Gobierno de México. https://bit.ly/3qjX6If
DOF, 1980 Norma Mexicana NMX-AA-003-1980 Aguas Residuales, Muestreo, Diario Oficial de la Federación 25 de marzo de 1980. México D.F.
DOF, 1997 Norma Oficial Mexicana 001-SEMARNAT-1996 Que establece los límites máximos permisibles de contaminantes en las descargas de aguas residuales en aguas y bienes nacionales. Diario Oficial de la Federación 6 de enero de 1997. México D.F.
Dognani, G., Hadi, P., Ma, H., Cabrera, F. C., Job, A. E., Agostini, D.L.S., y Hsiao, B. S. (2019). Effective chromium removal from water by polyaniline-coated electrospun adsorbent membrane. Chem. Eng. J., 372: 341-351. https://doi.org/10.1016/j.cej.2019.04.154
Haslett, B., Reid, R., y Rengel, Z. (2001). Zinc mobility in wheat: Uptake and distribution of zinc applied to leaves or roots. Annals of Botany - ANN BOT., 87: 379-386. https://doi.org/10.1006/anbo.2000.1349
Iqbal, A., Liu, X., y Chen, G. H. (2020). Municipal solid waste: Review of best practices in application of life cycle assessment and sustainable management techniques. Science of The Total Environment, 138622. http://doi.org/10.1016/j.scitotenv.2020.138622
Kankanige, D., Dayanthi, W., Nagasinghe, I., Disanayaka, A., y Kawamoto, K. (2019). Low-Cost Permeable Reactive Barrier (PRB) System to treat the organic compounds and nutrients in the groundwater contaminated by the landfill-leachate. Engineer: Journal of the Institution of Engineers, Sri Lanka, 52: 15. https://doi.org/10.4038/engineer.v52i2.7350
Kaza, S., Yao, L., Bhada Tata, P., y VanWoerden, F., (2018). What a Waste 2.0. World Bank, Washington, DC. https://doi.org/10.1596/978-1-4648-1329-0
Liu S., Li X., y Wang H. (2011). Hydraulics analysis for groundwater flow through permeable reactive barriers. Environmental Modeling & Assessment, 16(6): 591-598. https://doi.org/10.1007/s10666-011-9268-0
Maamoun, I., Eljamal, O., Falyouna, O., Eljamal, R., y Sugihara, Y. (2020) Multi-objective optimization of permeable reactive barrier design for Cr(VI) removal from groundwater. Ecotoxicology and Environmental Safety, 200 https://doi.org/10.1016/j.ecoenv.2020.110773
Macaulay, B., Aderibigbe, A., y Ogunwole, G. (2018). Novel eco-friendly mitigation strategies for managing oil spills and municipal waste dump site leachates. https://doi.org/10.1007/978-3-319-48281-1_110-1
Madaffari, M., Bilardi, S., Calabrò, P., y Moraci N. (2017). Nickel removal by zero valent iron/lapillus mixtures in column systems. Soils and Foundations, 57(5): 745-759. https://doi.org/10.1016/j.sandf.2017.08.006
Maitra, S. (2019). Permeable reactive barrier: a technology for groundwater remediation. A mini review. Research Journal of Life 5(1): 203 http://doi.org/10.26479/2019.0501.21
Mittal, A., Singh, R., Chakma, S., Gaurav, G. (2020). Permeable reactive barrier technology for the remediation of groundwater contaminated with nitrate and phosphate resulted from pit-toilet leachate, Journal of Water Process Engineering, 37. https://doi.org/10.1016/j.jwpe.2020.101471
Mohan, S., Gandhimathi, R. (2009). Removal of heavy metal ions from municipal solid waste leachate using coal fly ash as an adsorbent. J Hazard Mater, 169(1-3): 351-359 http://doi.org/10.1016/j.jhazmat.2009.03.104
Peralta Videa, J., Lopez, M., Narayan, M., Saupe, G., y Gardea Torresdey, J. (2009). The biochemistry of environmental heavy metal uptake by plants: implications for the food chain. Int J Biochem Cell Biol., 41(8-9):1665-77, Aug-Sep. https://doi.org/10.1016/j.biocel.2009.03.00
Pérez Espinosa, V. (2014). Inmovilización de elementos potencialmente tóxicos en zonas mineras abandonadas mediante la construcción de tecnosoles y barreras reactivas permeables. Memoria presentada para optar al grado de Doctor en Ingeniería Química por la Universidad de Murcia, España.
Raisi, S., Sulaiman, H., Suliman, F., y Abdalla, O. (2014). Assessment of Heavy Metals in Leachate of an Unlined Landfill in the Sultanate of Oman. International Journal of Environmental Science and Development, 5(1). https://doi.org/10.7763/IJESD.2014.V5.451
Scherer, M., Richter, S., Valentine, R., Alvarez, P. (2000). Chemistry and microbiology of permeable reactive barriers for in situ groundwater clean up. Crit Rev Microbiol., 26(4): 221-64. https://doi.org/10.1080/10408410091154237
Segura, R., Martínez, G., Apolinar, J., y García, M., (2015) Remoción de Cr6+ de lixiviados de tiraderos de basura con arcillas modificadas o activadas. CienciaUANL, 18(75): 54-70.
SEMARNAT (2017). Residuos sólidos urbanos y de manejo especial, acciones y programas. Secretaría de Medio Ambiente y Recursos Naturales. https://bit.ly/3xHkBNH
Susunaga Miranda M. A., yEstévez Garrido B. M (2018). Metales pesados en los lixiviados provenientes del basurero no controlado de la ciudad de Veracruz. Revista Iberoamericana de Ciencias, 5(6): 164-171.
Susunaga Miranda, M. A., Estévez Garrido, B. M., y Susunaga Estévez, R. M. (2020). Characteristics of Silica Sand from Alvarado, Veracruz, Mexico as material for permeable reactive barriers for the remediation of aquifers contaminated with leachates from uncontrolled landfills. Enfoque UTE, 11(4): 87-100. https://doi.org/10.29019/enfoqueute.v11n4.674
Striegel, J., Sanders, D., y Veenstra, J. (2001). Treatment of contaminated groundwater using permeable reactive barriers. Environmental Geosciences, 8(4): 258-265. https://doi.org/10.1046/j.1526-0984.2001.84004.x
Thakur, A., Vithanage, M., Das, B., y Kumar, M. (2020). A review on design, material selection, mechanism, and modelling of permeable reactive barrier for community-scale groundwater treatment. Environmental Technology & Innovation, 19. https://doi.org/10.1016/j.eti.2020.100917
Vian Pérez, J., Velasco Pérez, A., y García Herrera, T. (2019). Residuos sólidos urbanos. Una problemática ambiental y oportunidad energética. CIENCIA UANL, 22(97). https://bit.ly/2Uk7QdA
Vukojević, N., Daković, A., Ugrina, M., Trgo, M., Nuić, I., y Marković, M., (2017). Evaluation of low-cost sorbent as potental materials for In-Situ remediation of wáter contaminated with heavy metals. Technologica Acta, 10(2): 9-13. https://bit.ly/3zYYhkS
Youcal, Z. (2018) Chapter 1. Leachate generation and characteristics. Zhao Youcal (Ed.), Pollution control technology for leachate from municipal solid waste (pp.1-30). Butterworth-Heinemann. https://bit.ly/3zOBtnK
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 The Authors
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
The articles and research published by the UTE University are carried out under the Open Access regime in electronic format. This means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access. By submitting an article to any of the scientific journals of the UTE University, the author or authors accept these conditions.
The UTE applies the Creative Commons Attribution (CC-BY) license to articles in its scientific journals. Under this open access license, as an author you agree that anyone may reuse your article in whole or in part for any purpose, free of charge, including commercial purposes. Anyone can copy, distribute or reuse the content as long as the author and original source are correctly cited. This facilitates freedom of reuse and also ensures that content can be extracted without barriers for research needs.
This work is licensed under a Creative Commons Attribution 3.0 International (CC BY 3.0).
The Enfoque UTE journal guarantees and declares that authors always retain all copyrights and full publishing rights without restrictions [© The Author(s)]. Acknowledgment (BY): Any exploitation of the work is allowed, including a commercial purpose, as well as the creation of derivative works, the distribution of which is also allowed without any restriction.