Removal of Heavy Metals (Cr+6, Ni, Zn) from Leachates of the Sanitary Landfill of the City of Veracruz, Mexico with Reactive Permeable Silica Sand Barriers

Authors

DOI:

https://doi.org/10.29019/enfoqueute.756

Keywords:

Leachates, Contaminants, Heavy Metals, Permeable Reactive Barriers, Remediation, Porous Medium

Abstract

The use of Permeable Reactive Barriers as a material for the removal of heavy metals from the leachates of the Sanitary Landfills has been verified for various materials, the Silica Sand from the coasts of the municipality of Alvarado Veracruz in Mexico have the characteristics of size and composition Required to be used for this purpose, samples of leachate were collected from the Sanitary Landfill of the City of Veracruz and the concentrations of Ni, Cr+6 and Zn were determined were respectively 0.0818, 0.186 and 0.224 mg/l, three columns were built of acrylic and were filled with 20, 30 and 40 cm of washed and dried Silica Sand, treated and stabilized leachate was passed through the porous medium at a flow of 1.7 ml/s, taking samples at 40.75, 115 , 165 and 235 seconds for each column and the efficiency for the removal of these heavy metals was measured and a significant reduction of these pollutants was found, ranging from 76 to 93%. for Nickel, from 44 to 81 % in the case of hexavalent Chromium and from 65 to 92% for Zinc for a maximum time of 235 seconds, which indicates that this material can be used in the remediation of leachate.

Downloads

Download data is not yet available.

References

Asokbunyarat, V., Lens, P., y Annachhatre A. (2017). Chapter 3 Permeable Reactive Barriers for Heavy Metal Removal. Sustainable Heavy Metal Remediation, Environmental Chemistry for a Sustainable World 8, Rene, E.R., Sahinkaya, E., Lewis, A., Lens, P. (Eds.). Volume 1: Principles and Processes: 65-100. https://doi.org/10.1007/978-3-319-58622-9_3

Botello, A., Rendón von Osten, J., Gol -Boucht, G., y Agraz Hernández, C. (2005). Golfo de México. Contaminación e impacto ambiental: Diagnóstico y tendencias. 2da edición.

Cordeiro Andrade, D., y Vieira dos Santos, E. (2020). Combination of electrokinetic remediation with permeable reactive barriers to remove organic compounds from soils, Current Opinion in Electrochemistry, 22: 136-144. https://doi.org/10.1016/j.coelec.2020.06.002

Denkhaus, E., y Salnikow, K. (2002). Nickel essentiality, toxicity, and carcinogenicity. Critical Reviews in Oncology/Hematology, 42(1): 35-56. https://doi.org/10.1016/S1040-8428(01)00214-1

Díaz, M., Campos, R., Zamora, S., y Salgado, R. (2018) Cuantificación experimental del contenido masivo de SiO2 en depósitos eólicos de arena en una región de la cuenca del rio Papaloapan, Veracruz, México. Ingeniería Revista Académica de la Facultad de Ingeniería, Universidad Autónoma de Yucatán, 22(1). https://bit.ly/3d4vnpp

Dirección General de Desarrollo Minero (2017). Perfil del mercado del Sílice, Secretaría de Economía, Gobierno de México. https://bit.ly/3qjX6If

DOF, 1980 Norma Mexicana NMX-AA-003-1980 Aguas Residuales, Muestreo, Diario Oficial de la Federación 25 de marzo de 1980. México D.F.

DOF, 1997 Norma Oficial Mexicana 001-SEMARNAT-1996 Que establece los límites máximos permisibles de contaminantes en las descargas de aguas residuales en aguas y bienes nacionales. Diario Oficial de la Federación 6 de enero de 1997. México D.F.

Dognani, G., Hadi, P., Ma, H., Cabrera, F. C., Job, A. E., Agostini, D.L.S., y Hsiao, B. S. (2019). Effective chromium removal from water by polyaniline-coated electrospun adsorbent membrane. Chem. Eng. J., 372: 341-351. https://doi.org/10.1016/j.cej.2019.04.154

Haslett, B., Reid, R., y Rengel, Z. (2001). Zinc mobility in wheat: Uptake and distribution of zinc applied to leaves or roots. Annals of Botany - ANN BOT., 87: 379-386. https://doi.org/10.1006/anbo.2000.1349

Iqbal, A., Liu, X., y Chen, G. H. (2020). Municipal solid waste: Review of best practices in application of life cycle assessment and sustainable management techniques. Science of The Total Environment, 138622. http://doi.org/10.1016/j.scitotenv.2020.138622

Kankanige, D., Dayanthi, W., Nagasinghe, I., Disanayaka, A., y Kawamoto, K. (2019). Low-Cost Permeable Reactive Barrier (PRB) System to treat the organic compounds and nutrients in the groundwater contaminated by the landfill-leachate. Engineer: Journal of the Institution of Engineers, Sri Lanka, 52: 15. https://doi.org/10.4038/engineer.v52i2.7350

Kaza, S., Yao, L., Bhada Tata, P., y VanWoerden, F., (2018). What a Waste 2.0. World Bank, Washington, DC. https://doi.org/10.1596/978-1-4648-1329-0

Liu S., Li X., y Wang H. (2011). Hydraulics analysis for groundwater flow through permeable reactive barriers. Environmental Modeling & Assessment, 16(6): 591-598. https://doi.org/10.1007/s10666-011-9268-0

Maamoun, I., Eljamal, O., Falyouna, O., Eljamal, R., y Sugihara, Y. (2020) Multi-objective optimization of permeable reactive barrier design for Cr(VI) removal from groundwater. Ecotoxicology and Environmental Safety, 200 https://doi.org/10.1016/j.ecoenv.2020.110773

Macaulay, B., Aderibigbe, A., y Ogunwole, G. (2018). Novel eco-friendly mitigation strategies for managing oil spills and municipal waste dump site leachates. https://doi.org/10.1007/978-3-319-48281-1_110-1

Madaffari, M., Bilardi, S., Calabrò, P., y Moraci N. (2017). Nickel removal by zero valent iron/lapillus mixtures in column systems. Soils and Foundations, 57(5): 745-759. https://doi.org/10.1016/j.sandf.2017.08.006

Maitra, S. (2019). Permeable reactive barrier: a technology for groundwater remediation. A mini review. Research Journal of Life 5(1): 203 http://doi.org/10.26479/2019.0501.21

Mittal, A., Singh, R., Chakma, S., Gaurav, G. (2020). Permeable reactive barrier technology for the remediation of groundwater contaminated with nitrate and phosphate resulted from pit-toilet leachate, Journal of Water Process Engineering, 37. https://doi.org/10.1016/j.jwpe.2020.101471

Mohan, S., Gandhimathi, R. (2009). Removal of heavy metal ions from municipal solid waste leachate using coal fly ash as an adsorbent. J Hazard Mater, 169(1-3): 351-359 http://doi.org/10.1016/j.jhazmat.2009.03.104

Peralta Videa, J., Lopez, M., Narayan, M., Saupe, G., y Gardea Torresdey, J. (2009). The biochemistry of environmental heavy metal uptake by plants: implications for the food chain. Int J Biochem Cell Biol., 41(8-9):1665-77, Aug-Sep. https://doi.org/10.1016/j.biocel.2009.03.00

Pérez Espinosa, V. (2014). Inmovilización de elementos potencialmente tóxicos en zonas mineras abandonadas mediante la construcción de tecnosoles y barreras reactivas permeables. Memoria presentada para optar al grado de Doctor en Ingeniería Química por la Universidad de Murcia, España.

Raisi, S., Sulaiman, H., Suliman, F., y Abdalla, O. (2014). Assessment of Heavy Metals in Leachate of an Unlined Landfill in the Sultanate of Oman. International Journal of Environmental Science and Development, 5(1). https://doi.org/10.7763/IJESD.2014.V5.451

Scherer, M., Richter, S., Valentine, R., Alvarez, P. (2000). Chemistry and microbiology of permeable reactive barriers for in situ groundwater clean up. Crit Rev Microbiol., 26(4): 221-64. https://doi.org/10.1080/10408410091154237

Segura, R., Martínez, G., Apolinar, J., y García, M., (2015) Remoción de Cr6+ de lixiviados de tiraderos de basura con arcillas modificadas o activadas. CienciaUANL, 18(75): 54-70.

SEMARNAT (2017). Residuos sólidos urbanos y de manejo especial, acciones y programas. Secretaría de Medio Ambiente y Recursos Naturales. https://bit.ly/3xHkBNH

Susunaga Miranda M. A., yEstévez Garrido B. M (2018). Metales pesados en los lixiviados provenientes del basurero no controlado de la ciudad de Veracruz. Revista Iberoamericana de Ciencias, 5(6): 164-171.

Susunaga Miranda, M. A., Estévez Garrido, B. M., y Susunaga Estévez, R. M. (2020). Characteristics of Silica Sand from Alvarado, Veracruz, Mexico as material for permeable reactive barriers for the remediation of aquifers contaminated with leachates from uncontrolled landfills. Enfoque UTE, 11(4): 87-100. https://doi.org/10.29019/enfoqueute.v11n4.674

Striegel, J., Sanders, D., y Veenstra, J. (2001). Treatment of contaminated groundwater using permeable reactive barriers. Environmental Geosciences, 8(4): 258-265. https://doi.org/10.1046/j.1526-0984.2001.84004.x

Thakur, A., Vithanage, M., Das, B., y Kumar, M. (2020). A review on design, material selection, mechanism, and modelling of permeable reactive barrier for community-scale groundwater treatment. Environmental Technology & Innovation, 19. https://doi.org/10.1016/j.eti.2020.100917

Vian Pérez, J., Velasco Pérez, A., y García Herrera, T. (2019). Residuos sólidos urbanos. Una problemática ambiental y oportunidad energética. CIENCIA UANL, 22(97). https://bit.ly/2Uk7QdA

Vukojević, N., Daković, A., Ugrina, M., Trgo, M., Nuić, I., y Marković, M., (2017). Evaluation of low-cost sorbent as potental materials for In-Situ remediation of wáter contaminated with heavy metals. Technologica Acta, 10(2): 9-13. https://bit.ly/3zYYhkS

Youcal, Z. (2018) Chapter 1. Leachate generation and characteristics. Zhao Youcal (Ed.), Pollution control technology for leachate from municipal solid waste (pp.1-30). Butterworth-Heinemann. https://bit.ly/3zOBtnK

Published

2021-07-01

How to Cite

Susunaga Miranda, M. A., Estévez Garrido, B. M., Ortíz Muñiz, B., & Susunaga Estévez, R. M. (2021). Removal of Heavy Metals (Cr+6, Ni, Zn) from Leachates of the Sanitary Landfill of the City of Veracruz, Mexico with Reactive Permeable Silica Sand Barriers. Enfoque UTE, 12(3), pp. 65 – 78. https://doi.org/10.29019/enfoqueute.756

Issue

Section

Miscellaneous