Characterization of the Vegetation Community and its Contribution to a Carbon Stock in a Dry Forest
DOI:
https://doi.org/10.29019/enfoqueute.990Keywords:
Allometry; Tree Diversity; Conservation; Carbon Estimation; Diameter StructureAbstract
The dry forest ecosystem is characterized by their rich biodiversity and adaptations to arid conditions. This study focused on determining the composition and structure of the vegetation, examining species interactions, and estimating carbon stored in its aboveground biomass (AGB) using an allometric equation proposed for mixed dry forests. We used 10 plots of 10 x 20 m to record data on trees with a diameter at breast height (DBH) ≥ 5 cm. Taxonomic classification was initially obtained using experts and specialized databases. Ecological importance was assessed through the Importance Value Index (IVI), and species association was determined using the Indicator Value Index (IndVal%). We identified 148 individuals of 21 species, 19 genera, and 12 families in four groups with strong associations, with C. Trischistandra standing out for its high IVI. The Kruskal-Wallis test did not show significant differences in carbon stored between plots, and was estimated a storage potential of 70.47 Mg C ha-1. This research highlights the importance of key species in carbon capture, which is crucial for mitigating climate change. Effective management of these species could have a positive impact on the conservation of the dry forest ecosystem and the fight against global warming. This analysis provides a deep understanding of the structure of this ecosystem.
Downloads
References
OMM. (2023). Los últimos ocho años han sido los más cálidos jamás registrados a nivel mundial. [Online]. Available: https://wmo.int/es/media/news/los-ultimos-ocho-anos-han-sido-los-mas-calidos-jamasregistrados-nivel-mundial.
FAO y PNUMA, “El estado de los bosques del mundo 2020. Los bosques, la biodiversidad y las personas”, ONU, Programa para el medio ambiente, Roma, 2020. Available: http://doi.org/10.4060/ca8642es
Banco Mundial (18 Marzo 2016). Por qué los bosques son fundamentales para el clima, el agua, la salud y los medios de subsistencia. [Online]. Available: https://goo.su/FdDUYC
N. Harris, D. Gibbs, A. Baccini, R. Birdsey, S. de Bruin, M. Farina, L. Fatoyinbo, M. Hansen, M. Herold, R. Houghton, P. Potapov, D. Requena, R. Roman, S. Saatchi, C. Slay, S. Turubanova, A. Tyukavina. “Global Maps of Twenty-First Century Forest Carbon Fluxes,” Nature Climate Change, vol. 11, pp. 234-240, 2021, doi: 10.1038/s41558-020-00976-6
FAO, “Global Ecological Zones for FAO Forest Reporting: 2010 update”, Foos and Agriculture Organization of the United Nations, Rome, 2012. Available: https://www.fao.org/3/ap861e/ap861e00.pdf
Global Forest Watch. (2023). Forest-related greenhouse gas fluxes in Ecuador [Online]. Available: https://gfw.global/3S71kT7
Global Forest Watch. (2023). Location of Tree Cover Loss in Ecuador [Online]. Available: https://gfw.global/499SM4j
Global Forest Watch. (2023). Tree Cover Loss in Ecuador/Manabí [Online]. Available: https://gfw.global/3NREGvp
Global Forest Watch. (2023). Tree Cover Loss in Manabí/Portoviejo [Online]. Available: https://gfw.global/3S7PCGL
World Resources Institute, Global Fores Review. (2023). What is Carbon Dioxide Equivalent? [Online]. Available: https://research.wri.org/gfr/biodiversity-ecological-services-indicators/greenhouse-gas-fluxes-forests
S. Brown, Estimating Biomass and Biomass Change of Tropical Forests: a Primer. (FAO Forestry paper-134). Rome: Food and Agriculture Organization of the United Nations, 1997, ISBN 92-5-103955-0
J. Curtis, R. McIntosh, “An Upland Forest Continuum in the Prairie-Forest Border Region of Wisconsin,” Ecology, vol. 32, no. 3, pp. 476-496, 1951, doi: 10.2307/1931725
J. Chave, C. Andalo, S. Brown, M. Cairns, J. Chambers, D. Eamus, H. Fölster, F. Fromard, N. Higuchi, T. Kira, J.P. Lescure, B. Walker, H. Ogawa, H. Puig, B. Riera, T. Yakamura, “Tree Allometry and Improved Estimation of Carbon Stocks and Balance in Tropical Forests”, Oecologia, vol. 145, no. 1, pp. 81-99, 2005, doi: 10.1007/s00442-005-0100-x
A. E. Zanne, G. Lopez-Gonzalez, D. A. Coomes, J. Ilic, S. Jansen, S. L. Lewis, R. B. Miller, N. G. Swenson, M. C. Wiemann, J. Chave, “Global Wood Density Database”, Dryad, vol. 235, 2009, doi: https://doi.org/10.5061/dryad.234
E. Honorio, T. Baker, Manual para el monitoreo del ciclo del carbono en bosques amazónicos. Lima: Instituto de Investigaciones de la Amazonia Peruana, 2010.
J. Penman, M. Gytarsky, T. Hiraishi, T. Krug, D. Kruger, R. Pipatti, L. Buendia, K. Miwa, T. Ngara, K. Tanabe, F. Wagner, “Good Practice Guidance for Land Use, Land-Use Change and Forestry”, IPCC, Japan: IGES, 2003. ISBN 4-88788-003-0. https://www.ipcc.ch/site/assets/uploads/2018/03/GPG_LULUCF_FULLEN.pdf
T. Barrett, “Storage and Flux of Carbon in Live Trees, Snags, and Logs in the Chugach and Tongass National Forests” Pacific Northwest Research Station, Portland, 2014, doi:10.2737/pnw-gtr-889.
O. Chadwick, L. Bruce, Forest Stand Dynamics, New York: John Wiley & Sons, 1996, ISBN 9780471138334
Z. Qiu, M. Zhang, K. Wang, F. Shi, “Vegetation Community Dynamics During Naturalized Developmental Restoration of Pinus Tabulaeformis Plantation in North Warm Temperate Zone” Journal of Plant Ecology, vol. 16, no. 4, 2023.
H. Cotler, P. Ortega-Larrocea, “Effects of Land Use on Soil Erosion in a Tropical Dry Forest Ecosystem, Chamela Watershed, Mexico” CATENA, vol. 65, no. 2, pp. 107-117, 2006, doi: 10.1016/J.CATENA. 2005.11.004
N. T. Pao, K. Upadhaya, “Effect of Fragmentation and Anthropogenic Disturbances on Floristic Composition and Structure of Subtropical Broad Leaved Humid Forest in Meghalaya, Northeast India” Applied Ecology and Environmental Research, vol. 15, no. 4, 2017.
A. Berhanu, S. Demissew, W. Zerihun, M. Didita, “Woody Species Composition and Structure of Kuandisha Afromontane Forest Fragment, Northwestern Ethiopia”, Journal of Forestry Research, vol. 28, no. 2, pp. 343-355, 2017.
G. Tesfaye, D. Teketay, M. Fetene, “Regeneration of Fourteen Tree Species in Harenna Forest, Southeastern Ethiopia” Flora, vol. 197, no. 6, pp. 461-474, 2002, doi: 10.1007/s11676-016-0329-8
J. Denslow, “Patterns of Plant Species Diversity During Succession Under Different Disturbance Regimes”, Oecologia, vol. 46, no. 1, pp. 18-21, 1980, doi: 10.1007/BF00346960
X. Li, S. D. Wilson, Y. Song, “Secondary Succession in Two Subtropical Forests” Plant Ecology, vol. 143, no. 1, pp. 13-21, 1999.
H. A. Meyer, “Structure, Growth, and Drain in Balanced Uneven-Aged Forests” Journal of Forestry, vol. 50, No. 2, pp. 85-92, 1952.
H. H. Koricho, G. Shumi, T. Gebreyesus, S. Song, F. Fufa, “Woody Plant Species Diversity and Composition in and Around Debre Libanos Church Forests of North Shoa Zone of Oromiya, Ethiopia”, Journal of Forestry Research, vol. 32, no. 5, pp. 1929-1939, 2021, doi: 10.1007/s11676-020-01241-4
M. C. Wilson, X. Y. Chen, R. T. Corlett, R. K. Didham, P. Ding, R. D. Holt, M. Holyoak, G. Hu, A. C. Hughes, L. Jiang, W. F. Laurance, J. Liu, S. L. Pimm, S. K. Robinson, S. E. Russo, X. Si, D. S. Wilcove, J. Wu, M. Yu, “Habitat Fragmentation and Biodiversity Conservation: Key Findings and Future Challenges” Landscape Ecology, vol. 31, no. 2, pp. 219-227, 2016, doi: 10.1007/s10980-015-0312-3
Ministerio del Ambiente, “Estadisticas de Patrimonio Natural del Ecuador continental” Quito, Ecuador, 2018. [Online]. Available: https://proamazonia.org/wp-content/uploads/2019/10/ECUADOR_Folleto_Patrimonio_Natural_compressed.pdf
C. Salas, K. Montes, G. Sanchez, W. Alcívar, A. Murillo, F. Vera, D. Bolcato, S. Iglesias, “Influencia del gradiente altitudinal sobre la estimación del carbono almacenado en biomasa aérea viva y en suelos del ‘Bosque y vegetación protector El Artesan – EcuadorianHands’. Joa, Jipijapa” Ecosistemas, vol. 29, no. 2, 2020. https://doi.org/10.7818/ECOS.1973
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 The Authors
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
The articles and research published by the UTE University are carried out under the Open Access regime in electronic format. This means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access. By submitting an article to any of the scientific journals of the UTE University, the author or authors accept these conditions.
The UTE applies the Creative Commons Attribution (CC-BY) license to articles in its scientific journals. Under this open access license, as an author you agree that anyone may reuse your article in whole or in part for any purpose, free of charge, including commercial purposes. Anyone can copy, distribute or reuse the content as long as the author and original source are correctly cited. This facilitates freedom of reuse and also ensures that content can be extracted without barriers for research needs.
This work is licensed under a Creative Commons Attribution 3.0 International (CC BY 3.0).
The Enfoque UTE journal guarantees and declares that authors always retain all copyrights and full publishing rights without restrictions [© The Author(s)]. Acknowledgment (BY): Any exploitation of the work is allowed, including a commercial purpose, as well as the creation of derivative works, the distribution of which is also allowed without any restriction.