Use of membrane technology and resins for the separation and purification of polyphenols purple tree tomato (Solanum betaceum Cav)


  • Elena Beltrán Universidad Tecnológica Equinoccial
  • Dominique Pallet Centre De Cooperation Internationale En Recherche Agronomic Pour Le Developpement
  • Edwin Vera Escuela Politécnica Nacional
  • Jenny Ruales Escuela Politécnica Nacional



Microfiltration, ultrafiltration, tamarillo


The polyphenols fractionation of mesocarp juices, placenta and purple tree tomato peel using the pore size of the membrane as a means of selection was performed using micro and ultrafiltration tangential; tests made with HPLC showed that fractionation of phenolic compounds was not performed. The processes of concentration of the clarified juices of placenta and tree tomato peel by reverse osmosis obtained a volumetric concentration factor of 2 and 2.2 respectively. The polyphenol concentration increased by 1.5 times for placenta and 2.4 times for peel and antioxidant capacity increased by 2.4 times for both juices. The anthocyanins of placenta increased by 2.6 times. The use of the resin XA 5071 FG concentrated phenolic compounds with an increase of antioxidant capacity in a range between 4 and 5.5, and anthocyanins concentration was increased 1.8 times in the placenta juice. In conclusion the process of polyphenols concentration of tree tomato was more efficient using the resin XA 5071 FG than the reverse osmosis applied in this research.


Download data is not yet available.


Abdulla, M. (1986). Inorganic elements in prepared meals in Sweden. Ph D Tesis, Department of Clinical chemistry, University of Lund, Lund Sweden.
Bravo, L. (1998). Polyphenols: Chemistry, Dietary Sources, Metabolism, and Nutricional Significance. Nutrition Reviews, 56, 317-333.
Chandra, A., Nair, M., & Iezzoni, A. (1993). Isolation and Stabilization of Anthocyanins from Tart Cherries (Prunus cermug L.). Journal of Agricultural and Food Chemistry, 41, 1062-1065.
Chile, Instituto Nacional de Normalización (INN). (2007). Norma chilena. Miel de abejas- Determinación del contenido de fructosa, glucosa, sacarosa, turanosa y maltosa- Método HPLC con detector IR. NCh574.cR2006. Santiago, Chile.
Coronel, M. (2012). Microfiltración tangencial. Enfoque UTE, 3(1), 01–07.
Georgé, S., Brat, P., Alter, P., & Amiot, M. (2005). Rapid Determination of Polyphenols and Vitamin C in Plant-Derived Products. Journal of Agricultural and food chemistry, 53, 1370-1373.
Gil, M., Tomás-Berberán, F., Hess-Pierce, B., Holcroft, D., & Kader, A. (2000). Antioxidant activity of pomegranate juice and its relationship with phenolic composition and processing. J. Agric. Food Chem., 48, 4581-4589.
Horwits, W. (2000). Official Methods of Analysis of AOAC international (17 ed.). Maryland: AOAC INTERNATIONAL.
Lichtenthäler, R., & Marx, F. (2005). Total oxidant scavenging capacities of common european fruit and vegetables juices. J. Agric. Food Chem., 53., 103-110.
Liu, X., Xiao, G., Chen, W., Xu, Y., & Wu, J. (2004). Quantification and Purification of Mulberry Anthocyanins With Macroporous Resins. Journal of Biomedicine and Biotechnology, 5, 326-331.
Liu, X., Yang, B., Xu, Z., Zhao, J., Gao, Y., & Wang, L. (2007). Adsorption Caracteristics of Anthocyanins from Purple-fleshed Potato (Solanum tuberosum Jasim) Extract on Macroporous Resins. International Journal of Food Engineering, 3(5).
Macrae, R (1988). HPLC in food analysis, 2nd edition, Academic Press, Great Britain.
Marcillo, V. (2010). Obtención de jugos clarificados concentados de mora (Rubus glaucus), tomate de árbol (Solanum betaceum) y naranjilla (Solanum Quitoense) mediante el uso de tecnología de membranas. Escuela Politécnica Nacional, Quito.
Marcillo, V., Cruz, A. P. G., Cabral, L. M. C., Matta, V. M., Vera, E., & Ruales, J. (2007). Utilización de tenología de membranas para la obtención de jugo clarificado concentrado de mora (Rubus glaucus). Alimentos Ciencia e Ingeniería, 16(1), 89-91.
Matta, V., Moretti, R., & Cabral, L. (2004). Microfiltration and reverse osmosis for clarification and concentration of acerola juice. Journal of Food Engineering, 61, 477-482.
Mazza, G., & Velioglu, Y. (1992). Anthocyanins and other phenolic compounds in fruits of red-flesh apples. Food Chemistry, 43(2), 113-117.
Ou, B., Hampsch-Woodill, M., & Prior, R. (2001). Development and Validation of an Improved Oxygen Radical Absorbance Capacity Assay Using Fluorescein as the Fluorescent. J. Agric.Food Chem, 49, 4619-4626.
Scordino, M., Di Mauro, A., Passerini, A., & Maccarone, E. (2004). Adsorption of Flavonoids on Resins: Cyanidin 3-Glucoside. Journal of Agricultural and Food Chemistry, 52, 1965-1972.
Scott, K. (1995). Handbook of industrial membranes (2 ed.). Oxford.
Silva, E., Pompeu, D., Larondelle, Y., & Rogez, H. (2007). Optimisation of the adsorption of polyphenols from Inga edulis leaves on macroporous resins using an experimental design methodology. Separation and Purification Technology, 53, 274-280.
Vasco, C. (2005). Qualitative and quantitative analysis of phenolic compounds with antioxidant capacity in a selection of fruits and vegetables cultivated in Ecuador. M. Sc. thesis, Escuela Politécnica Nacional, Quito-Ecuador, Chalmers University of Technology, Gothenburg-Sweden.



How to Cite

Beltrán, E., Pallet, D., Vera, E., & Ruales, J. (2016). Use of membrane technology and resins for the separation and purification of polyphenols purple tree tomato (Solanum betaceum Cav). Enfoque UTE, 7(4), pp. 71 - 85.