Application of the CUDA programming model in the simulation of genetic sequences evolution


  • Freddy Yasmany Chávez Universidad Central “Marta Abreu” de Las Villas
  • Daniel Gálvez Lio Universidad Metropolitana del Ecuador



simulation, evolution model, Markov, parallel programming, CUDA


Simulation is a powerful approach in the study of the molecular evolution of genetic sequences and their divergence over time; there are different procedures for the simulation of molecular evolution, but all of them have high computational complexity, and in most cases the genetic sequences have large size, increasing the execution time of the implementations of those procedures. Based on this problem, this paper describes a proposal of parallelization model using CUDA technology and the results of this proposal are compared with its sequential equivalent.


Download data is not yet available.


Andrieu, C., & Doucet, A. (2010). Particle Markov chain Monte Carlo methods - Andrieu - 2010 - Journal of the Royal Statistical Society: Series B (Statistical Methodology) - Wiley Online Library. Journal of the Royal. Retrieved from
Claver, J. M., Sanjuan, A., & Arnau, V. (2007). Análisis paralelo de secuencias de ADN mediante el uso de GPU y CUDA., 1–6. Retrieved from
Cornebise, J., & Peters, G. W. (2009). Comments on “Particle Markov Chain Monte Carlo” by C. Andrieu, A. Doucet and R. Hollenstein. Arxiv, 1–9. Retrieved from
Counsell, D. (2005). Bioinformatics and molecular evolution. Comparative and Functional Genomics, 6(5-6), 317–319.
CUDA Zone | NVIDIA Developer. (2011). Retrieved January 4, 2017, from
Hwu, W. (2012). GPU computing gems. Applications of GPU computing series.
Link, W. A., & Eaton, M. J. (2012). On thinning of chains in MCMC. Methods in Ecology and Evolution, 3(1), 112–115.
Liu, Y., Schmidt, B., & Maskell, D. L. (2012). CUSBHAW: A CUDA compatible short read aligner to large genomes based on the Burrows-Wheeler transform. Bioinformatics, 28(14), 1830–1837.
Liu, Y., Wirawan, A., & Schmidt, B. (2013). CUDASW++ 3.0: accelerating Smith-Waterman protein database search by coupling CPU and GPU SIMD instructions. BMC Bioinformatics, 14, 117.
Manavski, S. A., & Valle, G. (2008). CUDA compatible GPU cards as efficient hardware accelerators for Smith-Waterman sequence alignment. BMC Bioinformatics, 9 Suppl 2, S10.
NVIDIA. (2015). CUDA Toolkit 7.5 Documentation. Retrieved January 4, 2017, from
Nvidia, C. (2011). NVIDIA CUDA C Programming Guide. Changes, (350), 173.
Sánchez, G. A. L., Carbajal, M. O., Cortés, N. C., & Fernández, R. B. (2012). Sobre la programación paralela de un algoritmo de optimización por cúmulo de partículas en un dispositivo GPU multi-hilos. Intekhnia, 6(2), 59–74.
Schatz, M., Trapnell, C., Delcher, A., & Varshney, A. (2007). High-throughput sequence alignment using Graphics Processing Units. BMC Bioinformatics, 8, 474.
Weber, R. (2012). Markov Chains. Statslab.Cam.Ac.Uk, 28–49.
Yang, Z. (2006). Computational molecular evolution. Oxford Series in Ecology and Evolution, xvi, 357 p.
Yang, Z., & Rodríguez, C. E. (2013). Searching for efficient Markov chain Monte Carlo proposal kernels. Proceedings of the National Academy of Sciences of the United States of America, 110(48), 19307–12.



How to Cite

Yasmany Chávez, F., & Gálvez Lio, D. (2017). Application of the CUDA programming model in the simulation of genetic sequences evolution. Enfoque UTE, 8(2), pp. 78 - 93.