Indoors positioning with Android, Bluetooth and RSSI




IPS, Bluetooth, RSSI, indoors positioning


This research has two main objectives. First, to determine experimentally the relationship between RSSI and distance. Second, with trilateration techniques, to establish the location of the receiver device in the experimental environment. The main contributions are: to determine how Bluetooth devices interact between them and how they differ when dealing with RSSI measures; to collect data over controlled distances applying to it regression analysis to establish the RSSI – distance relationship; to evaluate the basic trilateration techniques to produce a functional prototype for an indoor positioning system using Android devices. Results are encouraging considering that even with an extremely heterogeneous hardware and software configuration, it was possible to get a high average precision.



Download data is not yet available.


Alvear-Puertas, V., Rosero-Montalvo, P., Peluffo-Ordóñez, D., & Pijal-Rojas, J. (2017). Internet de las Cosas y Visión Artificial, Funcionamiento y Aplicaciones: Revisión de Literatura. Enfoque UTE, 8(1), 244–256.

An, K., Xie, S., & Ouyang, Y. (2017). Reliable Sensor Location for Object Positioning and Surveillance via Trilateration. Transportation Research Procedia, 23, 228–245.

Asadullah, M., & Ullah, K. (2017). Smart home automation system using Bluetooth technology. En Innovations in Electrical Engineering and Computational Technologies (ICIEECT), 2017 International Conference on (pp. 1–6). IEEE.

Cabrera-Goyes, E., & Ordóñez-Camacho, D. (2017). Hacia un Sistema Bluetooth de Ubicación en Interiores con Dispositivos Estándar Android. En International Conference on Information Systems and Computer Science. IEEE Xplore (Por publicarse).

Chowdhury, T., Rahman, M., Parvez, S.-A., Alam, A., Basher, A., Alam, A., & Rizwan, S. (2015). A multi-step approach for RSSI-based distance estimation using smartphones. En Networking Systems and Security (NSysS), 2015 International Conference on (pp. 1–5). IEEE.

Cinefra, N. (2014). An adaptive indoor positioning system based on Bluetooth Low Energy RSSI. Politecnico de Milano. Recuperado a partir de

Dahlgren, E., & Mahmood, H. (2014). Evaluation of indoor positioning based on Bluetooth Smart technology. Chalmers University of Technology, Göteborg, Sweden.

Feldmann, S., Kyamakya, K., Zapater, A., & Lue, Z. (2003). An Indoor

Bluetooth-Based Positioning System: Concept, Implementation and Experimental Evaluation. En International Conference on Wireless Networks (Vol. 272).

Krukowski, A., & Arsenijevic, D. (2010). RFID-based positioning for building management systems. En Proceedings of 2010 IEEE International Symposium on Circuits and Systems (ISCAS) (pp. 3569–3572).

Larranaga, J., Muguira, L., Lopez-Garde, J. M., & Vazquez, J. I. (2010). An environment adaptive ZigBee-based indoor positioning algorithm. En 2010 International Conference on Indoor Positioning and Indoor Navigation (pp. 1–8).

Lu, M., Chen, W., Shen, X., Lam, H.-C., & Liu, J. (2007). Positioning and tracking construction vehicles in highly dense urban areas and building construction sites. Automation in Construction, 16(5), 647–656.

Mainetti, L., Patrono, L., & Sergi, I. (2014). A survey on indoor positioning systems. En Software, Telecommunications and Computer Networks (SoftCOM), 2014 22nd International Conference on (pp. 111–120). IEEE.

Moser, V., Barišić, I., Rajle, D., & Dimter, S. (2016). Comparison of different survey methods data accuracy for road design and construction. En Proceedings of the International Conference on Road and Rail Infrastructure CETRA.

Quiñones-Cuenca, M., González-Jaramillo, V., Torres, R., & Jumbo, M. (2017). Sistema De Monitoreo de Variables Medioambientales Usando Una Red de Sensores Inalámbricos y Plataformas De Internet De Las Cosas. Enfoque UTE, 8(1), 329–343.

Rojas, J. P., Bustos, J. C., & Ordóñez-Camacho, D. (2017). Transporte público inteligente al alcance de sus manos. Enfoque UTE, 8(1), 122–134.

Rusli, M. E., Ali, M., Jamil, N., & Din, M. M. (2016). An Improved Indoor Positioning Algorithm Based on RSSI-Trilateration Technique for Internet of Things (IOT). En Computer and Communication Engineering (ICCCE), 2016 International Conference on (pp. 72–77). IEEE.

Suárez, A., Santana, J. A., Macias-Lopez, E. M., Mena, V. E., Canino, J. M., & Marrero, D. (2014). RSSI prediction in WiFi considering realistic heterogeneous restrictions. Network Protocols and Algorithms, 6(4), 19–40.

Torstensson, D. (2016). Indoor Positioning System using Bluetooth Beacon Technology. Mälardalen University, Mälardalen, Sweden.

Tóth, Z., & Tamás, J. (2016). Miskolc IIS hybrid IPS: Dataset for hybrid indoor positioning. En Radioelektronika (RADIOELEKTRONIKA), 2016 26th International Conference (pp. 408–412). IEEE.

Witten, I. H., Frank, E., Hall, M. A., & Pal, C. J. (2016). Data Mining, Fourth Edition: Practical Machine Learning Tools and Techniques (4 edition). Amsterdam Boston Heidelberg London New York Oxford Paris San Diego San Francisco Singapore Sydney Tokyo: Morgan Kaufmann.

Wu, R.-H., Lee, Y.-H., Tseng, H.-W., Jan, Y.-G., & Chuang, M.-H. (2008). Study of characteristics of RSSI signal. En Industrial Technology, 2008. ICIT 2008. IEEE International Conference on (pp. 1–3). IEEE.

Xiao, J., Zhou, Z., Yi, Y., & Ni, L. M. (2016). A Survey on Wireless Indoor Localization from the Device Perspective. ACM Comput. Surv., 49(2), 25:1–25:31.

Zaidi, S., Assaf, A. E., Affes, S., & Kandil, N. (2016). Accurate Range-Free Localization in Multi-Hop Wireless Sensor Networks. IEEE Transactions on Communications, 64(9), 3886–3900.



How to Cite

Cabrera-Goyes, E., & Ordóñez-Camacho, D. (2018). Indoors positioning with Android, Bluetooth and RSSI. Enfoque UTE, 9(1), pp. 118 - 126.



Computer Science, ICTs