Thermal Analysis of heat sink with Heat Pipes for High Performance Processors


  • Luis Fernando Toapanta Ramos Universidad Politécnica Salesiana
  • Cristian Andrade Universidad Politécnica Salesiana
  • Emilio Dávalos Álvarez Universidad Politécnica Salesiana
  • Sebastián Landázuri Zaldumbide Universidad Politécnica Salesiana
  • William Quitiaquez Universidad Politécnica Salesiana



Heatsink; thermal analysis; heat pipe; heat transfer; ANSYS


The objective of this document is to propose the thermal analysis of a heat dissipating device by using heat pipes containing different fluids, which are water, refrigerant R134a and methanol for the evaluation of these devices under certain design characteristics, due to the fact that at present the processors have a higher energy consumption and greater processing capacities, which causes a significant elevation of the temperature before demanding workloads. Through the use of the ANSYS simulation software, the thermal study of the device was carried out; in addition, the temperature gradient generated in it when in contact with a hot surface, which is going to be a high performance processor, demonstrating that stable temperatures can be obtained through the use of heat pipes at demanding workloads, ensuring correct operation and cooling of the processor.



Download data is not yet available.


Bardina, J., Huang, P., y Coakley, T. (1997). Turbulence modeling validation, testing, and development. NASA Technical Memorandum (110446), 1-88.
Blet, N., Lips, S., y Sartre, V. (2017). Heats pipes for temperature homogenization: A literature review. Applied Thermal Engineering, 118, 490-509.
Chan, C. W., Siqueiros, E., Ling-Chin, J., Royapoor, M., y Roskilly, A. P. (2015). Heat utilisation technologies: A critical review of heat pipes. Renewable and Sustainable Energy Reviews, 50, 615-627.
Chen, X., Ye, H., Fan, X., Ren, T., y Zhang, G. (2016). A review of small heat pipes for electronics. Applied Thermal Engineering, 96, 1-17.
Dillig, M., Leimert, J., y Karl, J. (2014). Planar high temperature heat pipes for SOFC/SOEC stack applications. Fuel Cells, 14(3), 479-488.
Dinker, A., Agarwal, M., y Agarwal, G. D. (2017). Heat storage materials, geometry and applications: A review. Journal of the Energy Institute, 90(1), 1–11.
Faghri, A. (2014). Heat Pipes: Review, Opportunities and Challenges. Frontiers in Heat Pipes, 5(1).
Garc, P. (2018). Control por modos deslizantes de un sistema de intercambio de calor : validación experimental (Sliding modes control for a heat Exchange system : experimental validation). Enfoque UTE, 110-119.
Garro, S., Díaz, L. A., Liang, J., Martínez, F., Meneses, W., Ortega, H., … Stradi, B. (2012). Modelación y simulación de disipadores de calor para procesadores de computadora en COMSOL Multiphysics. Tecnología En Marcha, 25(3), 70-80.
Hung, Y. M., y Seng, Q. (2011). Effects of geometric design on thermal performance of star-groove micro-heat pipes. International Journal of Heat and Mass Transfer, 54(5-6), 1198–1209.
Jafari, D., Franco, A., Filippeschi, S., y Di Marco, P. (2016). Two-phase closed thermosyphons: A review of studies and solar applications. Renewable and Sustainable Energy Reviews, 53, 575-593.
Jafari, D., Shamsi, H., Filippeschi, S., Di Marco, P., y Franco, A. (2017). An experimental investigation and optimization of screen mesh heat pipes for low-mid temperature applications. Experimental Thermal and Fluid Science, 84, 120-133.
Khalifa, A., Tan, L., Date, A., y Akbarzadeh, A. (2015). Performance of suspended finned heat pipes in high-temperature latent heat thermal energy storage. Applied Thermal Engineering, 81, 242–252.
Lee, J., y Kim, S. J. (2017). Effect of channel geometry on the operating limit of micro pulsating heat pipes. International Journal of Heat and Mass Transfer, 107, 204-212.
Lee, S., Pandiyan, D., Seo, J. S., Phelan, P. E., y Wu, C. J. (2016). Thermoelectric-based sustainable self-cooling for fine-grained processor hot spots. Proceedings of the 15th InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, ITherm 2016, 847–856.
Orr, B., Akbarzadeh, A., Mochizuki, M., y Singh, R. (2016). A review of car waste heat recovery systems utilising thermoelectric generators and heat pipes. Applied Thermal Engineering, 101, 490-495.
Reay, D., y Harvey, A. (2013). The role of heat pipes in intensified unit operations. Applied Thermal Engineering, 57(1-2), 147.153.
Shabgard, H., Allen, M. J., Sharifi, N., Benn, S. P., Faghri, A., y Bergman, T. L. (2015). Heat pipe heat exchangers and heat sinks: Opportunities, challenges, applications, analysis, and state of the art. International Journal of Heat and Mass Transfer, 89, 138-158.
Tang, H., Tang, Y., Wan, Z., Li, J., Yuan, W., Lu, L., … Tang, K. (2018). Review of applications and developments of ultra-thin micro heat pipes for electronic cooling. Applied Energy, 223(mayo), 383–400.
Velasco Roldán, L., Goyos Pérez, L., Delgado García, R., y Freire Amores, L. (2017). Instalación para medición de conductividad térmica en composites basados en residuos de biomasa. Enfoque UTE, 7(2), 69.



How to Cite

Toapanta Ramos, L. F., Andrade, C., Dávalos Álvarez, E., Landázuri Zaldumbide, S., & Quitiaquez, W. (2019). Thermal Analysis of heat sink with Heat Pipes for High Performance Processors. Enfoque UTE, 10(2), pp. 39 - 51.



Automation and Control, Mechatronics, Electromechanics, Automotive