Numerical analysis of the flow behavior in the throat section of an experimental conical nozzle




Oblique shock; Fluctuation; Throat length; Conical nozzle; Simulation


The flow pattern in supersonic nozzles is defined by the aerodynamic profiles of the geometry of the internal walls, among other parameters, the throat being a critical section. In the present work, the objective is to analyze the behavior of the flow in the straight section of the throat of an experimental conical nozzle of a solid fuel probe rocket engine. The over-expanded flow was simulated with the ANSYS-Fluent code in a 2D computational domain, using the RANS model and the Menter turbulence model, and the Sutherland equation for viscosity as a function of the temperature. Five case studies were performed for the throat length in the range of 1-10 mm. Fluctuations of Mach number, pressure and temperature, oblique shock waves in the throat section were obtained for the length of 10 mm; for shorter lengths the intensity of the shock magnitude decreased. It is concluded that, for the throat length of 1 mm, the flow is transonic without the presence of oblique shocks. In the diverging section, shock waves vary in intensity and change position.



Download data is not yet available.


Anderson, J. (2019). Hipersonic and high temperature gas dynamics. AIAA Education Series.

Anderson, J. D. (2017). Fundamentals of Aerodynamics. McGraw-Hill.

ANSYS. (2019). Ansys Fluent 2019 R1: Theory guide.

Arora, R., & Vaidyanathan, R. (2015). Experimental Investigation of Flow Through Planar Double Divergent Nozzles. Acta Astronautica 112, 200-216.

Barato, F., Ghilardi, M., Santi, M., & Pavarin, D. (2016, 25-27 de julio). Numerical Optimization of Hybrid Sounding Rockets through Coupled Motor-Trajectory Simulation [sesión de conferencia]. 52nd AIAA/SAE/ASEE Joint Propulsion Conference, Salt Lake City, UT, Estados Unidos.

Back, L. H., & Cuffel, R. F. (1966). Detection of Oblique Shocks in a Conical Nozzle with a Circular-Arc Throat. AIAA journal, 4(12), 2219-2221.

Blazek, J. (2015). Computational Fluid Dynamics: Principles and Applications. Butterworth-Heinemann.

Canales, J. (2013, 27 de marzo). Sounding Rocket Program in Perú [sesión de conferencia]. ARC AIAA SpaceOps 2012 Conference, Estocolmo, Suecia.

Cengel, Y. A., & Cimbala, J. M. (2019). Fluid Mechanics: Fundamentals and Applications. McGraw-Hill.

Dagaro, M., Peralta, L., Ludueña, G. A., Lorenzon, D., García, J. O., Galeasso, A., & Bustamante, J. (2019). Sobre el diseño y construcción de un túnel de viento supersónico bidimensional. Revista FCEFyN, 6(2), 35-40.

Ding, H., Wang, C., & Wang, G. (2017). Transient Conjugate Heat Transfer in Critical Flow Nozzle. International Journal of Heat and Mass Transfer, 104, 930-942.

De Gouyon, L. (2020, 9 de abril). The Birth of the Brazilian Space Program. Space Legal Issues.

De León, P. (2016, 26-30 de septiembre). The Cóndor Project [sesión de conferencia]. 67th International Astronautical Congress (IAC), Guadalajara, México.

Giglmaier, M., Quaatz, J. F., Gawehn, T., Gulhan, A.,  Adams, N. A. (2014). Numerical and Experimental Investigations of Pseudo-Shock Systems in a Planar Nozzle: Impact of Bypass Mass Flow due to Narrow Gaps. Shock Waves, 24, 139-156.

Heeg, F., Kilzer, L., Seitz, R., & Stoll, E. (2020). Design and Test of a Student Hybrid Rocket Engine with an External Carbon Fiber Composite Structure. Aerospace, 7(57), 1-19.

Huh, J., Ahn, B., Kim, Y., Song, H., Yoon, H., & Kwon, S. (2017). Development of a University-Based Simplified H2O2/PE Hybrid Sounding Rocket at KAIST. International Journal of Aeronautical and Space Sciences, 18(3), 512-521.

Kostic, O., Stefanovic, Z., & Kostic, I. (2017). Comparative CFD Analyses of a 2D Supersonic Nozzle Flow with Jet Tab and Jet Vane. Tehnicki Vjesnik, 24(5), 1335-1347.

Lacruz, L., Parco, M. A., Santos, R., Torre, C., Ferreira, J., & Benítez, P. (2016). Análisis experimental de las oscilaciones de presión interna en un motor de combustible sólido para cohete sonda. Revista Ciencia e Ingeniería, 37(2), 81-88.

Nair, P. P., Suryan, A., & Dong, H. (2020). Computational Study on Reducing Flow Asymmetry in Over-Expanded Planar Nozzle by Incorporating Double Divergence. Aerospace Science and Technology, 100, 1-18.

Nilsen, C., Meriam, S., & Meyer S. (2019, 7-11 de enero). Purdue Liquid Oxygen-Liquid Methane Sounding Rocket [sesión de conferencia]. AIAA SciTech Forum, San Diego, California, Estados Unidos.

Menter, F. (1994). Two Equation Eddy-Viscosity Turbulence Models for Engineering Applications. AIAA Journal, 32, 1598-1605.

Morales, G. A., & Mendoza, L. A. (2017). Diseño detallado e integración de un sistema de recuperación para el cohete sonda Libertador 1 [Tesis de grado, Fundación Universitaria Los Libertadores, Colombia].

Östlund, J., & Muhammed, B. (2005). Supersonic Flow Separation with Application to Rocket Engine Nozzles. ASME, Applied Mechanics Reviews, 58, 143-177.

Okninski, A., & Wolanski, P. (2015). Development of the Polish Small Sounding Rocket Program. Acta Astronautica, 108, 46-56.

Parco, M. A. (2014). Análisis experimental de temperaturas en la tobera de un motor de cohete de combustible sólido [Tesis de maestría, Universidad de Los Andes, Venezuela. Tesis no publicado].

Sutton, G. P., & Biblarz, O. (2016). Rocket Propulsion Elements. John Wiley & Sons.

Stark, R., & Génin, C. (2016). Optimization of a Rocket Nozzle Side Load Reduction Device. Journal of Propulsion and Power, 32(6), 1395-1402.

Shimshi, E., Ben-Dor, G., Levy, A., & Krothapalli, A. (2015). Asymmetric and Unsteady Flow Separation in High Mach Number Planar Nozzles. IJASAR, 2(6), 60-80.

Schlichting, H., & Klaus, G. (2017). Boundary-layer Theory. Springer-Verlag.

Schüttauf, K., Stamminger, A., & Lappöhn, K. (2017). The Stern Project-Hands on Rockets Science for University Student.

Schulz, W., Cid, G., & Elaskar, S. (2020). 2015-2020 Academic, Research and Service Report of the Aeronautical Department of the National of Córdoba. IJMCER, 2(4), 104-116.

Tolentino, S. L., Ferreira, J., Parco, M. A., Lacruz, L., & Marcano, V. (2017). Simulación numérica del flujo sobre-expandido en la tobera cónica experimental ULA-1A XP. Revista Universidad, Ciencia y Tecnología, 21(84), 126-133.

Tolentino, S. L., & Caraballo S. (2017). Simulación numérica del flujo de aire con onda de choque en un difusor transónico. Revista Universidad, Ciencia y Tecnología, 21(82), 4-15.

Tolentino, S. L. (2019). Evaluation of Turbulence Models for the Air Flow in a Planar Nozzle. Ingenius, 22, 25-37.

Tolentino, S. L. (2020). Evaluación de modelos de turbulencia para el flujo de aire en un difusor transónico. Revista Politécnica, 45(1), 25-38.

Tolentino, S. L., Nakka, R., Caraballo, S., & Mírez, J. (en prensa). Simulación numérica del flujo sub-expandido en la tobera cónica experimental Helios-X. Ingenius.

Vera, M. N., Guglielminotti, C. R., & Moreno, C. D. (2015). La participación de la Argentina en el campo espacial: Panorama histórico y actual. Ciencia, Docencia y Tecnología, 26(51), pp. 326-349.

Verma, S., Chidambaranatathan, M., & Hadjadj, A. (2018). Analysis of Shock Unsteadiness in a Supersonic Over-Expanded Planar Nozzle. European Journal of Mechanics/B Fluids, 68, 55-65.

Verberne, O., Boiron, A. J., Faenza, M. G., & Haemmerli, B. (2015, 27-29 de julio). Development of the North Star Sounding Rocket: Getting Ready for the First Demonstration Launch [sesión de conferencia]. Propulsion and Energy Forum. 51st AIAA/SAE/ASEE Joint Propulsion Conference. Orlando, FL, Estados Unidos.

Villanueva, F. M. (2018, 3-10 de marzo). Sounding Rocket Development Program for Perú [sesión de conferencia]. IEEE Aerospace Conference, Big Sky, MT. Estados Unidos.

White, F. (2016). Fluid Mechanics. McGraw-Hill Education.

Zebiri, B., Piquet, A., & Hadjadj, A. (2020). Analysis of Shock-Wave Unsteadiness in Conical Supersonic Nozzle. Aerospace Science and Technology, 105, 1-15.

Zucker, R. D., & Biblarz, O. (2019). Fundamentals of Gas Dynamics. John Wiley & Sons.



How to Cite

Tolentino Masgo, S. L. B., Parco, M. A., Caraballo, S., Lacruz, L., Marcano, V., Ferreira, J., & Mírez, J. (2021). Numerical analysis of the flow behavior in the throat section of an experimental conical nozzle. Enfoque UTE, 12(1), pp. 12 - 28.