Viability of micro electrical networks with high penetration of renewable resources in urban areas: Case study of residential condominiums

Authors

DOI:

https://doi.org/10.29019/enfoqueute.734

Keywords:

Renewable energy, Micro-grid, Photovoltaic, Residentia, Wind

Abstract

This study addresses the implementation of electrical micro-grids in urban areas as a response to the need for the insertion of renewable energies in different societies. In a first phase, the energy consumption profile of a condominium with a residential, commercial type load is characterized. and community, addressing the construction of said profile by lifting real loads and statistical criteria of use and coincidence. In the second phase, the natural resources, wind speed and solar radiation available in the study area are analyzed through the specialized software Homer Pro with latitude and longitude coordinates, subsequently the viability of the renewable electricity generation elements is analyzed and defined use, a possible generator set and its use of fuel are also proposed in order to complement the micro-grid in aspects of inertia and stability. With the energy demand and generation resources raised, architectural alternatives of a potential micro-network for the condominium are designed, simulations are carried out for isolated and interconnected cases with real values ​​of the environment and an economic analysis of the implementation, obtaining the viability of the micro network.

Metrics

Downloads

Download data is not yet available.

References

Amrr, S. M., Alam, M. S., Asghar, M. S. J., & Ahmad, F. (2018). Low cost residential microgrid system based home to grid (H2G) back up power management. Sustainable Cities and Society, 36(January), 204–214. https://doi.org/10.1016/j.scs.2017.10.016

Beltrán-Telles, A., Morera-Hernández, M., López-Monteagudo, F. E., & Villela-Varela, R. (2017). Prospectiva de las energías eólica y solar fotovoltaica en la producción de energía eléctrica. CienciaUAT, 11(2), 105. https://doi.org/10.29059/cienciauat.v11i2.742

Delboni, L. F. N., Marujo, D., Balestrassi, P. P., & Oliveira, D. Q. (2018). Electrical Power Systems: Evolution from Traditional Configuration to Distributed Generation and Microgrids. En Zambroni de Souza A., & Castilla, M (Eds.), Microgrids Design and Implementation (1-25). Springer. https://doi.org/10.1007/978-3-319-98687-6_1

EOLICCAT. (2020). Preguntas frecuentes. http://eoliccat.net/preguntas-frecuentes/?lang=es

Gómez, V. A., Hernández, C., & Rivas, E. (2018). La influencia de los niveles de penetración de la generación distribuida en los mercados energéticos. Información Tecnológica, 29(1), 117–128. https://doi.org/10.4067/S0718-07642018000100013

Guacaneme, J. A., Velasco, D., & Trujillo, C. L. (2014). Revisión de las características de sistemas de almacenamiento de energía para aplicaciones en micro redes. Información Tecnológica, 25(2), 175–188. https://doi.org/10.4067/S0718-07642014000200020

Guacaneme, W., Rodríguez, A. F., Gómez, L. M., Santamaría, F., & Trujillo, C. (2018). Desarrollo de un prototipo de micro-red residencial a baja escala. TecnoLógicas, 21(43), 107–125. https://doi.org/10.22430/22565337.1065

Homer Energy. (2019). HOMER PRO: Manual Homer Energy, 1–241. http://www.homerenergy.com/pdf/HOMERHelpManual.pdf

International Energy Agency. (2019). Renewables 2019 Analysis and forecast to 2024 Explore: Renewables 2019. https://www.iea.org/data-and-statistics/charts/renewable-capacity-growth-by-country-region-2018-2024

Khaligh, A., & Li, Z. (2010). Battery, Ultracapacitor, Fuel Cell, and Hybrid Energy Storage Systems for Electric, Hybrid Electric, Fuel Cell, and Plug-In Hybrid Electric Vehicles: State of the Art. IEEE Transactions on Vehicular Technology, 59(6), 2806–2814. https://doi.org/10.1109/TVT.2010.2047877

Lata-García, J., Reyes-Lopez, C., Jurado, F., Fernández-Ramírez, L. M., & Sanchez, H. (2017, October 18–20). Sizing Optimization of A Small Hydro/Photovoltaic Hybrid System for Electricity Generation in Santay Island, Ecuador By Two Methods. [Proceedings], 1–6. 2017 CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies, CHILECON 2017, Pucon, Chile. https://doi.org/10.1109/CHILECON.2017.8229539

Manoj Kumar, N., Chopra, S. S., Chand, A. A., Elavarasan, R. M., & Shafiullah, G. M. (2020). Hybrid Renewable Energy Microgrid for A Residential Community: A Techno-Economic and Environmental Perspective in The Context Of The SDG7. Sustainability, 12(10), 1–30. https://doi.org/10.3390/SU12103944

Mosquera, F. (2020). Localización óptima de plantas virtuales de generación en sistemas eléctricos de potencia basados en flujos óptimos de potencia. Revista de I+D Tecnológico, 16(2), s. p. https://doi.org/10.33412/idt.v16.2.2827

Pascual, J., Martín, I. S., Ursúa, A., Sanchis, P., & Marroyo, L. (2013, September, 15–19). Implementation and Control of A Residential Microgrid Based on Renewable Energy Sources, Hybrid Storage Systems and Thermal Controllable Loads, 2304–2309. 2013 IEEE Energy Conversion Congress and Exposition, ECCE 2013, Denver, CO, Estados Unidos. https://doi.org/10.1109/ECCE.2013.6646995

Pascual, J., Sanchis, P., & Marroyo, L. (2014). Implementation and Control of A Residential Electrothermal Microgrid Based on Renewable Energies, A Hybrid Storage System and Demand Side Management. Energies, 7(1), 210–237. https://doi.org/10.3390/en7010210

Recalde, M. Y., Bouille, D. H., & Girardin, L. O. (2015). Limitaciones para el desarrollo de energías renovables en Argentina. Problemas del Desarrollo, 46(183), 89–115. https://doi.org/10.1016/j.rpd.2015.10.005

Rodriguez-Diaz, E., Palacios-Garcia, E. J., Anvari-Moghaddam, A., Vasquez, J. C., & Guerrero, J. M. (2017, June 27–29). Real-time Energy Management System for a hybrid AC/DC residential microgrid, 256–261. 2017 IEEE 2nd International Conference on Direct Current Microgrids, ICDCM 2017, Nuremburg. https://doi.org/10.1109/ICDCM.2017.8001053

Rousis, A. O., Tzelepis, D., Konstantelos, I., Booth, C., & Strbac, G. (2018). Design of A Hybrid AC/DC Microgrid Using Homer Pro: Case Study on An Islanded Residential Application. Inventions, 3(3), 1–14. https://doi.org/10.3390/inventions3030055

Sivarasu, S. R., Chandira Sekaran, E., & Karthik, P. (2015). Development of Renewable Energy Based Microgrid Project Implementations for Residential Consumers in India: Scope, Challenges and Possibilities. Renewable and Sustainable Energy Reviews, 50, 256–269. https://doi.org/10.1016/j.rser.2015.04.118

Suresh, V., Muralidhar, M., & Kiranmayi, R. (2020). Modelling and Optimization of An Off-Grid Hybrid Renewable Energy System for Electrification in A Rural Areas. Energy Reports, 6, 594–604. https://doi.org/10.1016/j.egyr.2020.01.013

Trujillo Sandoval, D. J., & Torres García, M. E. (2020). Respuesta de demanda de energía por introducción de vehículos eléctricos: Estado del arte [Response of Demand for Energy by Electric Vehicles Introduction: State of the Art]. Revisa de I+D Tecnológico, 16(1), s. p. https://doi.org/10.33412/idt.v16.1.2433

Umbarila Valencia, L. P., Alfonso Moreno, F. L., & Rivera Rodríguez, J. C. (2015). Importancia de las energías renovables en la seguridad energética y su relación con el crecimiento económico. Revista de Investigación Agraria y Ambiental, 6(2), 231. https://doi.org/10.22490/21456453.1419

Yousaf, A., Khan, B. A., Bashir, U., & Ahmad, F. (2019, April 16–17). Overview of Implementing Microgrid, Its Policies, Incentives and Challenges in Pakistan. [Proceedings], 6–11. 2019 6th International Conference on Electrical and Electronics Engineering, ICEEE 2019, Instabul, Turkey. https://doi.org/10.1109/ICEEE2019.2019.00009

Published

2021-04-05

How to Cite

Trujillo Sandoval, D. J., Mosquera Velásquez, F. I., & García Torres, E. M. (2021). Viability of micro electrical networks with high penetration of renewable resources in urban areas: Case study of residential condominiums. Enfoque UTE, 12(2), pp. 19 - 36. https://doi.org/10.29019/enfoqueute.734

Issue

Section

Miscellaneous