Hydrological modeling of the urban basin of the Bélico river in the city of Santa Clara, Cuba





rainfall, runoff, hydrological modeling, urban flooding, curve number


Urban floods are a phenomenon associated with heavy rainfall in relatively short periods of time, the causes that cause them are dissimilar and are generally accompanied by poor urban planning that reduces hydraulic sections of rivers, streams, and any drainage channel. The city of Santa Clara in Cuba, presents serious flooding problems near the Bélico and Cubanicay rivers due to the decrease in the section of their channels due to urban indiscipline. This contribution obtains the values of the maximum runoff flow for various control sections located along these rivers, using the TR-55 model (Technical Report 55) of the United States Natural Resources Conservation Service (NRCS), for its acronym in English, formerly named Soil Conservation Service). Three models associated with convective rains Type I, II, III, associated with the peaks of the storms and their temporal location will be carried out, with which the maximum expenses associated with storms of different configuration can be defined for a probability of 1%, 2% and 10%. The results obtained show that the most critical situation occurs for Type III rain and the maximum runoff value for a 1% probability at the basin closure point is 170 m3/s.



Download data is not yet available.


Ballinas-González, H. A., Alcocer-Yamanaka, V. H., Canto-Rios, J. J. y Simuta-Champo, R. (2020). Sensitivity Analysis of the Rainfall-Runoff Modeling Parameters in Data-Scarce Urban Catchment. Hydrology, 7(4). https://doi.org/10.3390/hydrology7040073/

Beven, K. J. (2020). A history of the concept of time of concentration. Hydrol. Earth Syst. Sci., 24(5), 2655-2670. https://doi.org/10.5194/hess-24-2655-2020/

Boyd, O., Grounds, R. M., & Bennett, E. D. (1993). A randomized clinical trial of the effect of deliberate perioperative increase of oxygen delivery on mortality in high-risk surgical patients. Jama, 270(22), 2699-2707.

Campos, J. N. B., Studart, T. M., Souza Filho, F. D. y Porto, V. C. (2020). On the Rainfall Intensity-Duration-Frequency Curves, Partial-Area Effect and the Rational Method: Theory and the Engineering Practice. Water, 12(10). https://doi.org/10.3390/w12102730/

Castillo, C., Abreu Franco, D. E. y Álvarez González, M. (2021). Evaluación de distintas fórmulas empíricas para el cálculo del tiempo de concentración en la cuenca urbana del río Bélico y Cubanicay, ciudad de Santa Clara. Enfoque UTE, 12, 51-64. https://doi.org/10.29019/enfoqueute.729/

Castillo, C., Domínguez, I. y Martínez, Y. (2022). Modelos paramétricos de distribución temporal de precipitaciones en la estación meteorológica Yabú de la provincia Villa Clara, Cuba. Tecnologías y Ciencias del Agua. Preprint. doi: https://doi.org/10.24850/j-tyca-14-4-4/

Castillo, C., Domínguez, I., Martínez, Y. y Abreu, D. (2022). Curvas de Intensidad-Duración-Frecuencia para la ciudad de Santa Clara, Cuba. Tecnologías y Ciencias del Agua. Preprint. doi: https://doi.org/ 10.24850/j-tyca-15-1-9/

Chin David, A. (2019). Estimating Peak Runoff Rates Using the Rational Method. Journal of Irrigation and Drainage Engineering, 145(6), 04019006. https://doi.org/10.1061/(ASCE)IR.1943-4774.0001387/

Chow, Y. S., Moriguti, S., Robbins, H., & Samuels, S. M. (1964). Optimal selection based on relative rank (the “secretary problem”). Israel Journal of mathematics, 2(2), 81-90.

Dhakal, N., Fang, X., Thompson, D. B., & Cleveland, T. G. (2014, July). Modified rational unit hydrograph method and applications. In Proceedings of the Institution of Civil Engineers-Water Management (Vol. 167, No. 7, pp. 381-393). Thomas Telford Ltd.

Deb, P., y Kiem, A. S. (2020). Evaluation of rainfall–runoff model performance under non-stationary hydroclimatic conditions. Hydrological Sciences Journal, 65(10), 1667-1684. https://doi.org/10.1080/02626667.2020.1754420/

Deb, P., Kiem, A. S. y Willgoose, G. (2019). A linked surface water-groundwater modelling approach to more realistically simulate rainfall-runoff non-stationarity in semi-arid regions. Journal of Hydrology, 575, 273-291. https://doi.org/https://doi.org/10.1016/j.jhydrol.2019.05.039/

Fraga, I., Cea, L. y Puertas, J. (2019). Effect of rainfall uncertainty on the performance of physically based rainfall–runoff models. Hydrological Processes, 33(1), 160-173.


García, A., & Lenin, Y. (2022). Diseño hidráulico de obras de protección del margen derecho del río Coca; barrio Con Hogar ciudad del Coca (Bachelor's thesis, Quito: UCE).

Haan, C. T., Barfield, B. J., & Hayes, J. C. (1994). Design hydrology and sedimentology for small catchments. Elsevier.

Hasan, H. H., Mohd Razali, S. F., Ahmad Zaki, A. Z. y Mohamad Hamzah, F. (2019). Integrated Hydrological-Hydraulic Model for Flood Simulation in Tropical Urban Catchment. Sustainability, 11(23). https://doi.org/10.3390/su11236700/

Hettiarachchi, S., Wasko, C. y Sharma, A. (2019). Can antecedent moisture conditions modulate the increase in flood risk due to climate change in urban catchments? Journal of Hydrology, 571, 11-20. https://doi.org/10.1016/j.jhydrol.2019.01.039/

Hollis, G. E. (1975), The effect of urbanization on floods of different recurrence interval, Water Resour. Res., 11( 3), 431– 435, https://doi.org/10.1029/WR011i003p00431.

Hu, C., Wu, Q., Li, H., Jian, S., Li, N. y Lou, Z. (2018). Deep Learning with a Long Short-Term Memory Networks Approach for Rainfall-Runoff Simulation. Water, 10(11). https://doi.org/10.3390/w10111543/

Hu, C., Xia, J., She, D., Song, Z., Zhang, Y. y Hong, S. (2021). A new urban hydrological model considering various land covers for flood simulation. Journal of Hydrology, 603, 126833. https://doi.org/10.1016/j.jhydrol.2021.126833/

Joshi, N., Bista, A., Pokhrel, I., Kalra, A., y Ahmad, S. Rainfall-Runoff Simulation in Cache River Basin, Illinois, Using HEC-HMS. World Environmental and Water Resources Congress 2019, 348-360. https://doi.org/doi:10.1061/9780784482339.035/

K. N, V. (2021). “Runoff assessment by Storm water management model (SWMM)- A new approach”. Journal of Applied and Natural Science, 13(SI), 142-148. https://doi.org/10.31018/jans.v13iSI.2813/

Kader, M. Y. A., Bad, R. y Saley, B. (2020). Study of the 1D Saint-Venant Equations and Application to the Simulation of a Flood Problem. Journal of Applied Mathematics and Physics, 8(7), 14. https://doi.org/10.4236/jamp.2020.87090/

Karpathy Nicholas, S., y Chin David, A. (2019). Relationship between Curve Number and ϕ-Index. Journal of Irrigation and Drainage Engineering, 145(11), 06019009. https://doi.org/10.1061/(ASCE)IR.1943-4774.0001426/

Lee, J. G., & Heaney, J. P. (2003). Estimation of urban imperviousness and its impacts on storm water systems. Journal of Water Resources Planning and Management, 129(5), 419-426.

Leopold, L. B. (1968). Hydrology for urban land planning: A guidebook on the hydrologic effects of urban land use (Vol. 554). US Geolgoical Survey.

Lian, H., Yen, H., Huang, J.-C., Feng, Q., Qin, L., Bashir, M. A., Wu, S., Zhu, A. X., Luo, J., Di, H., Lei, Q. y Liu, H. (2020). CN-China: Revised runoff curve number by using rainfall-runoff events data in China. Water Research, 177, 115767. https://doi.org/https://doi.org/10.1016/j.watres.2020.115767/

Maidment, D. R. (1993). GIS and hydrologic modeling. Environmental modeling with GIS., 147-167.

Miller, A. J., Welty, C., Duncan, J. M., Baeck, M. L. y Smith, J. A. (2021). Assessing urban rainfall-runoff response to stormwater management extent. Hydrological Processes, 35(7). https://doi.org/https://doi.org/10.1002/hyp.14287/

Mishra, S.K., Singh, V.P. y Singh, P.K. (2018). Revisiting the Soil Conservation Service Curve Number Method. En Singh, V., Yadav, S., Yadava, R. (eds) Hydrologic Modeling. Water Science and Technology Library, 81. Springer, https://doi.org/10.1007/978-981-10-5801-1_46/

Moglen, G. E., McCuen, R. H., y Moglen, R. L. (2018). Consequences of Changes to the NRCS Rainfall-Runoff Relations on Hydrologic Design. Journal of Hydrologic Engineering, 23(8), 04018032. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001681/

Musy, A., & Higy, C. (2004). Hydrologie: Une science de la nature (Vol. 21). PPUR presses polytechniques.

Nardi, F., Annis, A., y Biscarini, C. (2018). On the impact of urbanization on flood hydrology of small ungauged basins: the case study of the Tiber river tributary network within the city of Rome. Journal of Flood Risk Management, 11(S2), S594-S603. https://doi.org/https://doi.org/10.1111/jfr3.12186/

Ormsbee, L., Hoagland, S. y Peterson, K. (2020). Limitations of TR-55 Curve Numbers for Urban Development Applications: Critical Review and Potential Strategies for Moving Forward. Journal of Hydrologic Engineering, 25(4), 02520001. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001885/

Poudel, U., Ahmad, S. y Stephen, H. (2020). Impact of Urbanization on Runoff and Infiltration in Walnut Gulch Experimental Watershed. Watershed Management 2020, 219-232. https://doi.org/doi:10.1061/9780784483060.020/

Richards, L. A., & Weaver, L. R. (1944). MOISTURE RETENTION BY SOME IRRIGATED SOILS AS. Journal of Agricultural Research, 69, 215.

Roohi, M., Soleymani, K., Salimi, M. y Heidari, M. (2020). Numerical evaluation of the general flow hydraulics and estimation of the river plain by solving the Saint–Venant equation. Modeling Earth Systems and Environment, 6(2), 645-658. https://doi.org/10.1007/s40808-020-00718-9

Ross, C. W., Prihodko, L., Anchang, J., Kumar, S., Ji, W. y Hanan, N. P. (2018). HYSOGs250m, global gridded hydrologic soil groups for curve-number-based runoff modeling. Scientific Data, 5(1), 180091. https://doi.org/10.1038/sdata.2018.91/

Schoener, G. (2018). Urban Runoff in the U.S. Southwest: Importance of Impervious Surfaces for Small-Storm Hydrology. Journal of Hydrologic Engineering, 23(2), 05017033. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001610/

Stella, J. M., y Anagnostou, E. N. (2018). Modeling the flood response for a sub-tropical urban basin in south Florida. Tecnología y ciencias del agua, 9, 128-141. https://doi.org/10.24850/j-tyca-2018-03-05/

Valle Junior, L. C. G. D., Rodrigues, D. B. B. y Oliveira, P. T. S. D. (2019). Initial abstraction ratio and Curve Number estimation using rainfall and runoff data from a tropical watershed. RBRH, 24(0). https://doi.org/10.1590/2318-0331.241920170199/

Viessman, W., & Lewis, G. L. (1995). Introduction to Hydrology . Reading, MA: Addision.

Walega, A., Amatya, D. M., Caldwell, P., Marion, D. y Panda, S. (2020). Assessment of storm direct runoff and peak flow rates using improved SCS-CN models for selected forested watersheds in the Southeastern United States. Journal of Hydrology: Regional Studies, 27, 100645. https://doi.org/https://doi.org/10.1016/j.ejrh.2019.100645/

Wang, S., y Wang, H. (2018). Extending the Rational Method for assessing and developing sustainable urban drainage systems. Water Research, 144, 112-125. https://doi.org/https://doi.org/10.1016/j.watres.2018.07.022/

Wheater, H., Sorooshian, S., & Sharma, K. D. (Eds.). (2007). Hydrological modelling in arid and semi-arid areas. Cambridge University Press.

Wu, S.-J., Yeh, K.-C., Ho, C.-H. y Yang, S.-H. (2016). Modeling probabilistic lag time equation in a watershed based on uncertainties in rainfall, hydraulic and geographical factors. Hydrology Research, 47(6), 1116-1141. https://doi.org/10.2166/nh.2016.134/

Yao, L., Wei, W., Yu, Y., Xiao, J. y Chen, L. (2018). Rainfall-runoff risk characteristics of urban function zones in Beijing using the SCS-CN model. Journal of Geographical Sciences, 28(5), 656-668. https://doi.org/10.1007/s11442-018-1497-6/

Yogi, F., Correa, C. J. P., Arruda, E. M. y Tonello, K. C. (2021). Sensitivity analysis of rainfall–runoff parameters models to estimate flows. Applied Water Science, 11(2), 25. https://doi.org/10.1007/s13201-020-01348-3/



How to Cite

Castillo García, C. L., & Carvajal González, V. M. (2023). Hydrological modeling of the urban basin of the Bélico river in the city of Santa Clara, Cuba. Enfoque UTE, 14(2), pp. 77-93. https://doi.org/10.29019/enfoqueute.888