Quality parametres of four types of formulations based on Trichoderma asperellum and Purpuricillium lilacinum

Authors

  • William Viera Instituto Nacional de Investigaciones Agropecuarias
  • Michelle Noboa Instituto Interamericano de Cooperación para la Agricultura
  • Johana Bermeo Universidad Politécnica Salesiana
  • Francisco Báez Instituto Nacional de Investigaciones Agropecuarias
  • Trevor Jackson AgResearch

DOI:

https://doi.org/10.29019/enfoqueute.v9n4.348

Keywords:

Trichoderma, Purpureocillium, viability, purity, concentration

Abstract

The genus Trichoderma and to a lesser extent Purpureocillium, have been studied extensively for their properties as beneficial microorganisms and their effectiveness in disease control. However, biological efficacy is not the only parameter considered when formulating a microorganism; viability, purity and concentration in the formulation are important characteristics to ensure success in the field. The aim of this study was to access different types of formulations (granules, powders, liquids) to record their behavior over time, using the variables viability, concentration and purity to select best formulations based on these parameters. As a result, it was obtained that the bioformulates based on T. asperellum showed greater stability during storage, with dry solid formulations being more stable in comparison with liquid products. In terms of the P. lilacinum formulations, it was observed that the presentation of wettable powders showed the highest concentration and stability over the time.

Metrics

Downloads

Download data is not yet available.

References

Arora, N., Khare, E., y Maeshwari, E. (2010). Plant growth promoting rhizobacteria: Constraints in bioformulation, commercialization, and future strategies. Mycrobiology Monographs, 18(1), 97-116. https://doi.org/10.1007/978-3-642-13612-2_5
Barra, P., Barros, G., Etcheverry, M., y Nesci, A. (2018). Mass production studies in solid substrates with the entomopathogenic fungus, Purpureocillium lilacinum. International Journal of Advance Agricultural Research, 6(1), 78-84.
Cardona, N., Borrego, D., Fernández, E., Sánchez, J., Cardona, V., y Montoya, G. (2014). Evaluación microbiológica y patogenicidad de una bioformulacion líquida del hongo Purpureocillium sp. (cepa UdeA 0109) sobre estadios de Meloidogyne incognita-javanica. Biotecnología Aplicada, 31(1), 204-209.
Castillo, D., Zhu, K., Ek, M., y Sword, G. (2014). The entomopathogenic fungal endophytes Purpureocillium lilacinum (formerly Purpureocillium lilacinus) and Beauveria bassiana negatively affect cotton aphid reproduction under both greenhouse and field conditions. Plos One, 9(8), e103891. https://doi.org/10.1371/journal.pone.0103891
Djurfeldt, G., Holmén, H., Jirstrom, M., y Larsson, R. (2005). The African food crisis: Lessons from the Asian green revolution. Wallingford: CABI Publishing.
Gerhardson, B. (2002) Biological substitutes for pesticides. Trends in Biotechnology, 20(8), 338–343. https://doi.org/10.1016/S0167-7799(02)02021-8
Harman, G. (2005). Overview of mechanisms and uses of Trichoderma spp. Phytopathology, 96(2), 190-194. https://doi.org/10.1094/PHYTO-96-0190
Jayaraj, J., Radhakrishnan, N., y Velazhahan, R. (2006). Development of formulations of Trichoderma harzianum strain M1 for control of damping-off of tomato caused by Pythium aphanidermatum. Archives of Phytopathology and Plant Protection, 39(1), 1-8. https://doi.org/10.1080/03235400500094720
Jenkins, N., y Grzywacz, D. (2003). “Quality control and production of biological control agents: theory and testing procedures”. En: Van Lenteren, J. (Ed.). Towards the standardization of quality control of fungal and viral biological control agents. Silwood Park: CABI Bioscience.
Jones, K., y Burges, D. (1998). “Technology on formulation and application”. En: Burges, D. (Ed). Formulation of Microbial Biopesticides. Dodrecht: Kluwer Academic Publisher.
Kumar, S., Thakur, M., y Rani, A. (2014). Trichoderma: Mass production, formulation, quality control, delivery and its scope in commercialization in India for the management of plant diseases. African Journal of Agricultural Research, 9(53), 3838-3852. http://doi.org/10.5897/AJAR2014.9061
López, M., Rodríguez, D., y Loera O. (2015). Production of conidia of Beauveria bassiana in solid-state culture: Current status and future perspectives. Critical Reviews in Biotechnology, 35(3),334-341. https://doi.org/10.3109/07388551.2013.857293
Marín, P., y Bustillo, A. (2002). Pruebas microbiológicas y fisicoquímicas para el control de calidad de los hongos entomopatógenos. En: Memorias Curso Internacional Teórico-Práctico sobre entomopatógenos, parasitoides y otros enemigos naturales de la broca del café. Chinchiná: Colombia.
Masunaka, A., Hyakumachi, M., y Takenaka, S. (2011). Plant growth-promoting fungus, Trichoderma koningi suppresses isoflavonoid phytoalexin vestitol production for xolonization on/in the eoots of Lotus japonicus. Microbes and Environments, 26(2), 128–134.
Nuñez, M., Carrión, G., Nuñez, A., y López, D. (2012). Evaluación de la patogenicidad in vitro de Purpureocillium lilacinum sobre Globodera rostochiensis. Tropical and Subtropical Agrosystems, 15(2), 126-134.
Ruiz, C., Gómez, M., y Villamizar, L. (2015). Prototipo de formulación y atmósfera de empaque para la cepa antagonista Pseudomonas fluorescens Ps006. Revista Colombiana de Biotecnología, 17(2), 95-102. https://doi.org/10.15446/rev.colomb.biote.v17n2.54282
Santos, A., García, M., Cotes, A. M., & Villamizar, L. (2012). Efecto de la formulación sobre la vida útil de bioplaguicidas a base de dos aislamientos colombianos de Trichoderma koningiopsis Th003 y Trichoderma asperellum Th034. Revista Iberoamericana de Micología, 29(3), 150-156. https://doi.org/10.1016/j.riam.2011.11.002

Published

2018-12-21

How to Cite

Viera, W., Noboa, M., Bermeo, J., Báez, F., & Jackson, T. (2018). Quality parametres of four types of formulations based on Trichoderma asperellum and Purpuricillium lilacinum. Enfoque UTE, 9(4), pp. 145 -153. https://doi.org/10.29019/enfoqueute.v9n4.348

Issue

Section

Agronomy