RETRACTED: Design and construction of a permanent mold using finite element software
DOI:
https://doi.org/10.29019/enfoqueute.v4n1.22Keywords:
FEM, die, power system, shrinkage, mold, knob, solidificationAbstract
(Received: 2012/11/07 - Accepted: 2013/06/18 - Retracted: 2013/08/27)
Editorial Board Retraction Notice:
This article was retracted upon receiving confirmed evidence of double publication, therefore disrespecting the journal´s code of conduct. This Editorial Board takes this decision to honor the scientific community guidelines, in spite of having a Transfer of Copyright Agreement signed by the corresponding author.
The project was developed with specifications of a finite element method for the calculation ofthe field variables within a mold contour by choosing an appropriate mathematical model whichpermitted to incorporate simulation software. The development was a physical-practicalapplication for a piece of aluminum that will be built, and consists in the analysis of the functionsand stresses to which it is submitted. The metal mold is designed specifically for the mentionedpieces using “VULCAN” which is based on the Finite Element Method (FEM). The simulation isperformed in three stages of the fusion process: filling, solidification and cooling. The filling isconsidered slow enough so that there are not expected to be greater turbulences and that thepieces are completely filled. Solidification is analyzed as an optimal process, avoiding defects oflack of material in the mold cavity (shrinkage). In the cooling stage, deformations and residualstresses are analyzed. At the same time, every result is validated analytically. With thisinformation the final geometry of the metal mold is defined and the alloy which will be used is confirmed. Subsequently, a CAD-CAM-CAE system is used for the design and development ofthe mold, and the aluminum pieces (knobs) obtained are tested.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
The articles and research published by the UTE University are carried out under the Open Access regime in electronic format. This means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access. By submitting an article to any of the scientific journals of the UTE University, the author or authors accept these conditions.
The UTE applies the Creative Commons Attribution (CC-BY) license to articles in its scientific journals. Under this open access license, as an author you agree that anyone may reuse your article in whole or in part for any purpose, free of charge, including commercial purposes. Anyone can copy, distribute or reuse the content as long as the author and original source are correctly cited. This facilitates freedom of reuse and also ensures that content can be extracted without barriers for research needs.
This work is licensed under a Creative Commons Attribution 3.0 International (CC BY 3.0).
The Enfoque UTE journal guarantees and declares that authors always retain all copyrights and full publishing rights without restrictions [© The Author(s)]. Acknowledgment (BY): Any exploitation of the work is allowed, including a commercial purpose, as well as the creation of derivative works, the distribution of which is also allowed without any restriction.