An expert system based on data mining and linear integer programming to support the timetabling design and courses assignment in higher education

Authors

  • Daniel Calle-López Universidad Politécnica Salesiana
  • Javier Cornejo-Reyes Universidad Politécnica Salesiana
  • Fernando Pesántez-Avilés Universidad Politécnica Salesiana
  • Mónica Rodas-Tobar Universidad del Azuay
  • César Vásquez-Vásquez Universidad Politécnica Salesiana
  • Vladimir Robles-Bykbaev Universidad Politécnica Salesiana http://orcid.org/0000-0002-7645-8793

DOI:

https://doi.org/10.29019/enfoqueute.v9n1.226

Keywords:

programación entera lineal, minería de datos, diseño de horarios, asignación de materias, educación superior.

Abstract

Commonly, the most of organizations tend to manage the timetables of their employees according to traditional guidelines (imposing an 8-hour work day). The primary objective of this approach is controlling some variables such as the attendance and absenteeism of the employees, and even, in some cases considering this situation as work efficiency. However, the new organizational tendencies have broken specific paradigms based on mechanistic orientation, trying to create a new horizon towards the construction of organic and dynamic organizations. For these reasons, in this paper, we present an expert system based on integer linear programming and data mining with the aim of addressing the problem of assigning courses to teachers and timetabling (considered an NP-complete problem). The preliminary results are encouraging, given that the system was able to assign courses on a database consisting off 133.000 registers of teachers, and at the same time, generate timetables with minimal computational costs.

Downloads

Download data is not yet available.

References

CES. (2010). Ley Orgánica de Educación Superior, República del Ecuador. Consejo de Educación Superior

Echauri, A. M. F., Minami, H., & Sandoval, M. J. I. (2014). “La Escala de Likert en la evaluación docente: acercamiento a sus características y principios metodológicos”. Perspectivas Docentes, (50).

Garbanzo Vargas, G. M. (2007). “Factores asociados al rendimiento académico en estudiantes universitarios, una reflexión desde la calidad de la educación superior pública”. Educación, 31 (1).

Larrea, E., y Granados, V. (2016). “El sistema de educación superior para la sociedad del buen vivir basada en el conocimiento”. Guayaquil: Universidad Católica de Santiago de Guayaquil.

Makhorin, A. (2008). GLPK (GNU linear programming kit). http://www. gnu. org/software/glpk/.

Mitchell, S., OSullivan, M., & Dunning, I. (2011). “PuLP: a linear programming toolkit for python. The University of Auckland, Auckland, New Zealand”.

Pesántez-Avilés, F., Calle-López, D., Robles-Bykbaev, V., Rodas-Tobar, M., y Vásquez-Vásquez, C. (2017). “A recommender system based on data mining techniques to support the automatic assignment of courses to teachers in higher education”. En Inciscos 2017: Proceedings of the 2nd international conference on information systems and computer science.

Sánchez Fleitas, N., Comas Rodríguez, R., García Lorenzo, M., y Riverol Quesada, A. (2016). “Modelo de manejo de datos, con el uso de inteligencia artificial, para un sistema de información geográfica en el sector energético”. Enfoque UTE, 7 (3).

UNESCO. (2013). “Clasificación Internacional Normalizada de la Educación –CINE”.

Zabalza, M. Á., y Beraza, M. Á. Z. (2003). Competencias docentes del profesorado universitario: calidad y desarrollo profesional (Vol. 4). Narcea Ediciones.

Published

2018-03-30

How to Cite

Calle-López, D., Cornejo-Reyes, J., Pesántez-Avilés, F., Rodas-Tobar, M., Vásquez-Vásquez, C., & Robles-Bykbaev, V. (2018). An expert system based on data mining and linear integer programming to support the timetabling design and courses assignment in higher education. Enfoque UTE, 9(1), pp. 102 – 117. https://doi.org/10.29019/enfoqueute.v9n1.226

Issue

Section

Computer Science, ICTs