Dimensional analysis applied to jacketed shell and tube heat exchangers modeling

Authors

DOI:

https://doi.org/10.29019/enfoqueute.745

Keywords:

Buckingham Pi-theorem, heat transfer, hydrogen sulphide, modeling, simulation

Abstract

Dimensional analysis was utilized on this research to establish a shortcut model for predicting hydrogen sulphide gas discharge temperature in jacketed shell and tube heat exchangers. Since the equipment belongs to an online industrial facility, the passive experimental method was applied. Selection of the heat transfer process parameters was followed by application of the Buckingham Pi-theorem and the repeating-variables technique. After formulation of the dimensionless groups, approximation of the explicit model equation was carried out through a least-squares multivariate linear regression. The model predictive ability performance was appraised by comparing predictions versus measured discharge temperatures, hence attaining a Pearson correlation of
97.5 %, a mean absolute error of 2.1 K, and 1.7 % maximum deviations. The explicit equation that was obtained is pertinent to studied heat exchangers, when 0.55 ≤ ṁ1 ≤ 0.60, 1.06 ≤ ṁ2 ≤ 1.09, and 0.22 ≤ ṁ3 ≤ 0.24 (fluids flowrate, kg/s). It can be used as an alternative calculation method for quick anticipation of the equipment performance, which overcomes computation of the overall heat transfer coefficients.

Downloads

Download data is not yet available.

Author Biography

Andres Adrian Sánchez-Escalona, Universidad de Moa

Nació en Cuba en 1978. Graduado de Ingeniero Mecánico (2002) en la Universidad de Holguín, y Máster en Electromecánica (2017) en el Instituto Superior Minero Metalúrgico de Moa, Cuba. Actualmente trabaja como Subdirector de Ingeniería en Moa Nickel S.A., empresa mixta de minería y procesamiento primario de níquel y cobalto. Tiene más de 16 años de experiencia en administración de proyectos y prestación de servicios de ingeniería para plantas de procesos químicos. También trabajó como supervisor del Departamento de Ingeniería Mecánica durante 10 años. Su línea de investigación está orientada a intercambiadores de calor de tubos y coraza enchaquetados y transferencia de calor por convección, con flujos monofásicos. Los estudios precedentes incluyen la aplicación de métodos convencionales, modelación matemática, así como el uso de herramientas de inteligencia artificial como las Redes Neuronales Artificiales y Algoritmos Genéticos. Actualmente es estudiante del Programa de Doctorado de la Universidad de Moa "Dr. Antonio Núñez Jiménez".

References

Al-Malah, K. I. M. (2017). Exemplification of dimensional analysis via MATLAB® using Eigen values. International Journal of Applied Mathematics and Theoretical Physics 3(1), pp. 14-19. https://doi.org/10.11648/j.ijamtp.20170301.13

Batmaz, E. & Sandeep, K.P. (2005). Calculation of the overall heat transfer coefficients in a triple tube heat exchanger. Heat and Mass Transfer 41(3), pp. 271-279. https://doi.org/10.1007/s00231-004-0546-0

Bayram, H. & Sevilgen, G. (2017). Numerical investigation on the effect of variable baffle spacing on the thermal performance of shell and tube heat exchangers. Energies 10, pp. 1156. https://doi.org/10.3390/en10081156

Edmonds, W. A. & Kennedy, T. D. (2017). An applied guide to research designs: quantitative, qualitative, and mixed methods, 2 ed. Los Angeles, USA: SAGE Pub.

Ekici, C. & Teke, I. (2018). Developing a new solar radiation estimation model based on Buckingham theorem. Results in Physics 9, pp. 263-269. https://doi.org/10.1016/j.rinp.2018.02.064

Ferreira, J.; Nogueira, B. L. & Secchi, A. R. (2019). Dynamic simulation of evaporator in ethanol biorefinery. Latin American Applied Research 49(1), pp. 65-70.

JCGM. (2008). Evaluation of measurement data– Guide to the expression of uncertainty in measurement, vol 100. Madrid, Spain: Centro Español de Metrología.

Laskowski, R. M. (2011). The application of the Buckingham π theorem to modeling high-pressure regenerative heat exchangers in off-design operation. Journal of Power Technologies 91(4), pp. 198-205.

Laskowski, R. M. & Lewandowski, J. (2012). Simplified and approximated relations of the heat transfer effectiveness for a steam condenser. Journal of Power Technologies 92(4), pp. 258-265.

Li, L. & Lu, Z. (2018). A new method for model validation with multivariate output. Reliability Engineering & System Safety, 169, pp. 579-592. https://doi.org/10.1016/j.ress.2017.10.005

Markowski, M. & Trzcinski, P. (2019). On-line control of heat exchanger network under fouling constraints. Energy 185(C), pp. 521-526. https://doi.org/10.1016/j.energy.2019.07.022

Mohanraj, M.; Jayaraj, S. & Muraleedharan, C. (2015). Applications of artificial neural networks for thermal analysis of heat exchangers – a review. International Journal of Thermal Sciences 90, pp. 150-172. https://doi.org/10.1016/j.ijthermalsci.2014.11.030

Mohanty, D. K. (2017). Application of neural network model for predicting fouling behavior of a shell and tube heat exchanger”. International Journal of Industrial and Systems Engineering 26(2), pp. 228-246. https://doi.org/10.1504/IJISE.2017.10004388

Nitsche, N. & Gbadamosi, R. O. (2016). Heat Exchanger Design Guide. Butterworth Heinemann, an imprint of Elsevier.

Patrascioiu, C. & Radulescu, S. (2015). Prediction of the outlet temperatures in triple-concentric heat exchangers in laminar flow regime: case study. Heat and Mass Transfer 51, pp. 59-66. https://doi.org/10.1007/s00231-014-1385-2

Pérez-Pirela, M. C. & García-Sandoval, J. P. (2018). Control por modos deslizantes de un sistema de intercambio de calor: validación experimental. Enfoque UTE 9(4), pp. 110-119. https://doi.org/10.29019/enfoqueute.v9n4.404

Radulescu, S.; Negoita, L. I. & Onutu, I. (2019). Effective overall heat transfer coefficient solver in a triple concentric-tube heat exchanger. Revista de Chimie 70(6), pp. 2040-2043. http://www.revistadechimie.ro

Rao, J. B. B. & Raju, V. R. (2016). Numerical and heat transfer analysis of shell and tube heat exchangers with circular and elliptical tubes. International Journal of Mechanical and Materials Engineering 11(6), pp. 1-18. https://doi.org/10.1186/s40712-016-0059-x

Sánchez-Escalona, A. A. & Góngora-Leyva, E. (2018). Artificial neural network modeling of hydrogen sulphide gas coolers ensuring extrapolation capability. Mathematical Modelling of Engineering Problems 5(4), pp. 348-356. https://doi.org/10.18280/mmep.050411

Sánchez-Escalona A. A. & Góngora-Leyva, E. (2019). Improvements to the Heat Transfer Process on a Hydrogen Sulphide Gas Coolers System. International Journal of Heat and Technology 37(1), pp. 249-256. https://doi.org/10.18280/ijht.370130

Sánchez-Escalona, A. A.; Góngora-Leyva, E. & Camaraza-Medina, Y. (2019). Monoethanolamine Heat Exchangers Modeling Using the Buckingham Pi Theorem. Mathematical Modelling of Engineering Problems 6(2): pp. 197-202. https://doi.org/10.18280/mmep.060207

Taler, D. (2019). Numerical Modelling and Experimental Testing of Heat Exchangers. Gewerbestrasse, Switzerland: Springer. https://doi.org/10.1007/978-3-319-91128-1

TEMA Inc. (2019). Standards of the Tubular Exchanger Manufacturers Association, 10.ª ed..

Toro-Carvajal, L. A. (2013). Métodos matemáticos avanzados para la modelación y simulación de equipos para procesos químicos y biotecnológicos. Ph.D. dissertation, Universidad Nacional de Colombia.

Turgut, O. E.; Turgut, M. S. & Coban, M. T. (2014). Design and economic investigation of shell and tube heat exchangers using Improved Intelligent Tuned Harmony Search algorithm. Ain Shams Engineering Journal 5, pp. 1215-1231. https://doi.org/10.1016/j.asej.2014.05.007

Uhia F. J.; Campo, A. & Fernández-Seara, J. (2013). Uncertainty analysis for experimental heat transfer data obtained by the Wilson Plot Method. Thermal Science 17(2), pp. 471-487. https://doi.org/10.2298/tsci110701136u

Xavier-Andrade, A.; Quitiaquez-Sarzosa, W. & Fernando-Toapanta, L. (2020). CFD Analysis of a solar flat plate collector with different cross sections. Enfoque UTE 11(2), pp. 95-108. https://doi.org/10.29019/enfoque.v11n2.601

Zohuri, B. (2015). Dimensional Analysis and Self-Similarity Methods for Engineers and Scientists. Springer.

Published

2021-07-01

How to Cite

Sánchez-Escalona, A. A., Camaraza-Medina, Y., Retirado-Mediaceja, Y., Góngora-Leyva, E., & Vega-Almaguer, M. (2021). Dimensional analysis applied to jacketed shell and tube heat exchangers modeling. Enfoque UTE, 12(3), pp. 36 – 50. https://doi.org/10.29019/enfoqueute.745

Issue

Section

Miscellaneous