Modeling and numerical simulation of the Richards equation for infiltration problems
DOI:
https://doi.org/10.29019/enfoqueute.v7n1.87Keywords:
infiltration, Richards equation, mathematical model, finite elementsAbstract
One of the most important natural resources we have is the soil and it is of great interest to the society to take care of them and not to pollute it. In the study of this issue, we are going to consider one of the most common forms of soil contamination due to an infiltration process. It is therefore that it is essential to address study and clearly understand this process by developing a mathematician model, which will be a representation of this physicist phenomenon. Then design and implement a computer program that simulates the infiltration of liquid pollutants in a given area. In this paper we will develop a mathematical model for two-dimensional infiltration in the saturated zone of porous media, based on the equation in nonlinear partial differential Richards Also, It will present a numerical solution through finite element method and first order This paper shows the computational implementation using a simulator that presents graphically the process of pollution afflicting the ground, exposed to certain pollutants, such as the oil spill in regions of eastern Ecuador, wastewater near industrial complexes, among others, over a certain period of time. Finally, this paper will allow for remedial studies in the case are already contaminated soils or preventive areas established as hazardous.
Downloads
References
Darcy, H. (1856). Les fontaines publiques de la ville de Dijon. Dalmont, Paris.
Buckingham, E. (1907). Studies on the movement of soil moisture. Washington: USDA
Evans, L.C. (1998). Partial differential Equations. American Mathematical Society. Providence: Graduate Studies in Mathematics.
Blytth, F., Freitas, M (2001). Geología Para Ingenieros. México: Compañía Editorial Continental.
Ehlers,W, Deformation and localization analysis of partially saturated soil, Recuperado 23 de septiembre de 2015. http://www.sciencedirect.com/science/article/pii/S0045782504001148
Gómez, J. Martin, D.. (2010). Análisis Funcional y Optimización. Chile: Universidad de Chile.
Gonzales de Vallejo, L. , I. Ferrer, M. (2002). Ingeniería Geológica. Madrid: Pearson Educacion.
Pino,E., Mejía, J., Abel, E. (Enero, 2012). Modelamiento numérico espacio-temporal 1d de la infiltración basado en la ecuación de Richards y otras simplificadas. Eciperu, 9, 31-36.
Richards, L.. (1931). Capillary conduction of liquids in porous media. USA: Physics, v. 1.
Richards, L.A., Gardner, W.R. Ogata, G. (1956). Physical processes determining water loss from soil. Soil Science Society of American Proceeding 20, 310-314.
Sayas, F. (2007). Modelos Matemáticos en Mecánica. España: Departamento de Matemática Aplicada, Universidad de Zaragoza.
Published
How to Cite
Issue
Section
License
The authors retain all copyrights ©.
- The authors retain their trademark and patent rights, as well as rights to any process or procedure described in the article.
- The authors retain the right to share, copy, distribute, perform, and publicly communicate the article published in Enfoque UTE (for example, post it in an institutional repository or publish it in a book), provided that acknowledgment of its initial publication in Enfoque UTE is given.
- The authors retain the right to publish their work at a later date, to use the article or any part of it (for example, a compilation of their work, lecture notes, a thesis, or for a book), provided that they indicate the source of publication (authors of the work, journal, volume, issue, and date).