Potencial Bioacumulador de Metales Pesados en Cinco Especies Forestales que Habitan en Entornos Mineros en la Región Amazónica Ecuatoriana
DOI:
https://doi.org/10.29019/enfoqueute.1031Palabras clave:
especies arbóreas, contaminación, minería, hojas, suelos, factor de bioconcentraciónResumen
La contaminación de suelos y ecosistemas por metales pesados es un problema ambiental que requiere atención urgente debido a los problemas ecológicos que genera. Las especies forestales se pueden utilizar para mitigar la contaminación debido a su potencial para bioacumular metales pesados. El objetivo de este trabajo fue evaluar el potencial bioacumulador de metales pesados en cinco especies forestales que viven en entornos mineros en la región amazónica ecuatoriana. Se analizó el factor de bioconcentración a partir de la relación entre la concentración de metales pesados en las hojas y el suelo para cinco especies forestales, tales como: Cedrela odorata, Parkia multijuga, Inga edulis, Cecropia ficifolia y Pourouma cecropiifolia, comúnmente distribuidas en la Amazonía ecuatoriana. Se utilizó espectrometría de absorción atómica para analizar los metales pesados en muestras de hojas y suelo de cada especie vegetal. Los resultados mostraron que P. cecropiifolia presentó el mayor factor de bioconcentración de plomo, C. odorata de cadmio y níquel, e I. edulis mayor potencial para absorción de hierro y aluminio. No se encontró correlación entre la concentración de los elementos en el suelo y las hojas, lo que demostró que la capacidad de bioacumulación de las especies estudiadas no depende de la concentración del elemento en el suelo. Esto facilita información relevante para la inclusión de estas especies con fines de fitorremediación.
Descargas
Citas
[1] K. N., S. M., Palansooriya, S. M. Shaheen, S. S. Chen, D. C. W.,Tsang, Y. Hashimoto, D. Hou, et al., Soil amendments for immobilization of potentially toxic elements in contaminated soils: A critical review. Environ Int., p. 105046, 2020. https://doi.org/10.1016/j.envint.2019.105046
[2] R. G. Garrett, Natural sources of metals to the environment. Hum Ecol Risk Assess, 6, 945-963, 2000. https://doi.org/10.1080/10807030091124383
[3] P. Lazo, T. Stafilov, F. Qarri, S. Allajbeu, L. Bekteshi, M. Frontasyeva, et al., Spatial distribution and temporal trend of airborne trace metal deposition in Albania studied by moss biomonitoring. Ecol Indic.,101, 1007-1017, 2019. https://doi.org/10.1016/j.ecolind.2018.11.053
[4] G. Tyler, Changes in the concentrations of major, minor and rare-earth elements during leaf senescence and decomposition in a Fagus sylvatica forest. For Ecol Manage, 206, 167-177, 2005. https://doi.org/10.1016/j.foreco.2004.10.065
[5] S. M. Serbula, T.S. Kalinovic, A. A. Ilic, J. V. Kalinovic y M. M. Steharnik, "Assessment of airborne heavy metal pollution using Pinus spp. and Tilia spp.," Aerosol Air Qual Res., 13, 563-573, 2013. https://doi.org/10.4209/aaqr.2012.06.0153
[6] A. K., M., Ratul Hassan, Uddin MK, Sultana MS, Akbor MA, Ahsan MA. Potential health risk of heavy metals accumulation in vegetables irrigated with polluted river water. Int Food Res J., 25, pp. 329-338. 2018
[7] F, Ugolini, R. Tognetti, A. Raschi, L. Bacci, L., "Quercus ilex as bioaccumulator for heavy metals in urban areas: Effectiveness of leaf washing with distilled water and considerations on the trees distance from traffic," Urban For Urban Green,12, pp. 576-584. 2013. https://doi.org/10.1016/j.ufug.2013.05.007.
[8] D. Neumann, "Heavy Metal Stress in Plants: From Molecules to Ecosystems", Phytochemistry, 53, p. 822. 2000. https://doi.org/10.1016/s0031-9422(00)00010-8.
[9] R. A,Wuana and F. E. Okieimen, "Heavy Metals in Contaminated Soils: A Review of Sources, Chemistry, Risks and Best Available Strategies for Remediation," ISRN Ecol., pp. 1-20. 2011. https://doi.org/10.5402/2011/402647
[10] K. Rehman, F. Fatima, I. Waheed and M. S. H. Akash, "Prevalence of exposure of heavy metals and their impact on health consequences," J Cell Biochem., 119, pp. 157-184. 2018. https://doi.org/10.1002/jcb.26234
[11] P. C. Nagajyoti, K. D. Lee and T. V. M. Sreekanth, "Heavy metals, occurrence and toxicity for plants: A review," Environ Chem Lett., 8, pp. 199-216. 2010. https://doi.org/10.1007/s10311-010-0297-8
[12] T. Sawidis, P. Krystallidis, D. Veros and M.Chettri, "A study of air pollution with heavy metals in Athens city and Attica basin using evergreen trees as biological indicators," Biol Trace Elem Res, 148, pp. 396-408. 2012. https://doi.org/10.1007/s12011-012-9378-9
[13] J. Liang, H. L. Fang, T. L. Zhang, X. X. Wang and Y. D. Liu, "Heavy metal in leaves of twelve plant species from seven different areas in Shanghai, China," Urban For Urban Green, 27, pp. 390-398. 2017. https://doi.org/10.1016/j.ufug.2017.03.006
[14] G. Tóth T. Hermann, M. R. Da Silva and L. Montanarella, "Heavy metals in agricultural soils of the European Union with implications for food safety", Environ Int., 88, pp. 299-309. . ://doi.org/10.1016/j.envint.2015.12.017
[15] A. Alahabadi, M. H. Ehrampoush, M. Miri, H. Ebrahimi Aval, S. Yousefzadeh and H. R. Ghaffari et al., "A comparative study on capability of different tree species in accumulating heavy metals from soil and ambient air," Chemosphere, 172, pp.459-4667. 2017. https://doi.org/10.1016/j.chemosphere.2017.01.045
[16] N. Mainville J. Webb, M. Lucotte, R. Davidson, O. Betancourt and E. Cueva et al., "Decrease of soil fertility and release of mercury following deforestation in the Andean Amazon, Napo River Valley, Ecuador, " Sci Total Environ., 368, pp.88-98. 2006. https://doi.org/https://doi.org/10.1016/j.scitotenv.200509.064.
[17] R. Xiao, S. Wang, R. Li, J. J. Wang and Z. Zhang, "Soil heavy metal contamination and health risks associated with artisanal gold mining in Tongguan, Shaanxi, China," Ecotoxicol Environ Saf., 141, 17-24. 2017. https://doi.org/10.1016/j.ecoenv.2017.03.002
[18] N. H. Tarras-Wahlber, A. Flachier, G. Fredriksson, S. Lane, B. Lundberg and O. Sangfors, "Environmental impact of small-scale and artisanal gold mining in southern Ecuador: Implications for the setting of environmental standards and for the management of small-scale mining operations," Ambio, 29, 484-491. 2000. https://doi.org/10.1579/0044-7447-29.8.484
[19] E. Peña-Carpio and J. M. Menéndez-Aguado, "Environmental study of gold mining tailings in the Ponce Enriquez mining area (Ecuador)," DYNA 83, pp. 237-245. 2016. https://doi.org/10.15446/dyna.v83n195.51745
[20] S. L. Pimm, C. N. Jenkins, R. Abell, T. M. Brooks, J. L. Gittleman, L. N. Joppa et al., "The biodiversity of species and their rates of extinction, distribution, and protection," Science, 344(6187). 2014. https://doi.org/10.1126/science.1246752
[21] P. K. Panday, M.T. Coe, M. N. Macedo, P. Lefebvre and A. D. d. A. Castanho, "Deforestation offsets water balance changes due to climate variability in the Xingu River in eastern Amazonia," J Hydrol 523, pp. 822-829. 2015. https://doi.org/10.1016/j.jhydrol.2015.02.018
[22] A. Greksa B. Ljevnaić-Mašić, J. Grabić, P. Benka, V. Radonić , B. Blagojević et al., "Potential of urban trees for mitigating heavy metal pollution in the city of Novi Sad, Serbia," Environ Monit Assess, 191, pp. 1-13. 2019. https://doi.org/10.1007/s10661-019-7791-7
[23] Y.Wu, X. Peng and X. Hu, "Vertical distribution of heavy metal in soil of abandoned vehicles dismantling area," Asian J Chem., 25, pp. 8423-8426. 2013. https://doi.org/10.14233/ajchem.2013.14770
[24] Z. Wang, X. Liu and H. Qin, "Bioconcentration and translocation of heavy metals in the soil-plants system in Machangqing copper mine, Yunnan Province, China," J Geochemical Explor., 200, 159-166. 2019. https://doi.org/10.1016/j.gexplo.2019.02.005
[25] Y. García, Y. Arteaga, V. del R. Chico, S. García, S. Luna and C. Bañol, "Potencial bioacumulador de metales pesados para la fitorremediación como alternativa para la recuperación del paisaje forestal en un área de extracción minera, Napo, Ecuador," Rev Cuba Ciencias For., 12, p. e8632024. Availabel: https://bit.ly/3yX0Qbq
[26] D. Satpathy and M. Reddy, "Phytoextraction of Cd, Pb, Zn, Cu and Mn by Indian mustard (Brassica juncea L.) grown on loamy soil amended with heavy metal contaminated municipal solid waste compost", Appl Ecol Environ Res., 11, 661-667. 2013. https://doi.org/110.15666/aeer/1104_661679
[27] A. Ipeaiyeda and M. Dawodu, "Assessment of toxic metal pollution in soil, leaves and tree barks: bioindicators of atmospheric particulate deposition within a University community in Nigeria," Adv Environ Sci., p. 6. 2014.
[28] P. Parmar B. Dave, A. Sudhir, K. Panchal, R. B., "Subramanian Physiological, Biochemical and Molecular Response of Plants Against Heavy Metals Stress," Int J Curr Res., 80-89. 2013.
[29] K. Šichorová, P. Tlustoš J. Száková, K. Kořínek and J. Balík, "Horizontal and vertical variability of heavy metals in the soil of a polluted area," Plant, Soil Enviro., 50, pp. 525-534. 2004. https://doi.org/10.17221/4069-pse
[30] MAE-TULSMA. Texto Unificado de Legislación Secundaria Medio Ambiental. Ministerio de Ambiente de Ecuador. Quito. 2015.
[31] I. Chamba-Eras, D. M. Griffith, C. Kalinhoff, J. Ramírez and M. J. Gázquez, "Hyperaccumulator Plants with Differential Phytoremediation Potential in an Artisanal Gold Mine of the Ecuadorian Amazon," Plant., 11, p. 1186. 2022. https://doi.org/https://www.mdpi.com/2223-7747/11/9/1186
[32] C. W. Martin, "Heavy metal trends in floodplain sediments and valley fill, River Lahn, Germany," Catena, 39, pp. 53-68. 2000. https://doi.org/10.1016/S0341-8162(99)00080-6
[33] S, Sauvé, W. Hendershot and H. E. Allen, "Solid-solution partitioning of metals in contaminated soils: Dependence on pH, total metal burden, and organic matter," Environ Sci Technol., 34, pp. 1125-1131. 2000. https://doi.org/10.1021/ES9907764
[34] M. E. B. Pineda and A. M. G. Rodríguez, "Metales pesados (Cd, Cr y Hg): su impacto en el ambiente y posibles estrategias biotecnológicas para su remediación," I3+, 2, pp. 82-112. 2015. https://doi.org/10.24267/23462329.113
[35] J. Barthwal and P. K. Smitha, "Nair Heavy Metal Accumulation in Medicinal Plants Collected from Environmentally Different Sites," Biomed Environ Sci., 21, pp. 319-324. 2008. https://doi.org/https://doi.org/10.1016/S0895-3988(08)60049-5
[36] C. Song, L. Lei and Q. Yang, "Pb, Cu botanogeochemical anomalies and toxic effects on plant cells in Pb-Zn (Sn) ore fields, Northeast Guangxi Autonomous Region, China," Chinese J Geochemistry., 26, pp. 329-332. 2007. https://doi.org/10.1007/s11631-007-0329-7
[37] E. Fernández-Ondoño, G. Bacchetta, A. M. Lallena, F. B. Navarro, I. Ortiz and M. N. Jiménez, "Use of BCR sequential extraction procedures for soils and plant metal transfer predictions in contaminated mine tailings in Sardinia," J Geochemical Exploration, 172, pp. 133-141. 2017. https://doi.org/10.1016/j.gexplo.2016.09.013
[38] O. Akintola and I. A. Bodede, "Distribution and accumulation of heavy metals in Red Cedar (Cedrela odorata) wood seedling grown in dumpsite soil," J Appl Sci Environ Manag., 23, p. 811. 2019. https://doi.org/10.4314/jasem.v23i5.6
[39] J. Marrugo-Negrete, S. Marrugo-Madrid, J. Pinedo-Hernández, J. Durango-Hernández and S. Díez, "Screening of native plant species for phytoremediation potential at a Hg-contaminated mining site," Sci Total Environ 542, pp. 809-816. 2016. https://doi.org/10.1016/j.scitotenv.2015.10.117
[40] R. A. Rivera-Rhon and E. Bravo-Grijalva, "Gobernanzas criminales y enclaves productivos de la minería ilegal en el Ecuador," Rev Logos Cienc Tecnol., 15, pp. 49-69. 2023. https://doi.org/10.22335/RLCT.V15I2.1734
[41] R. Estupiñán, P. Romero, M. García, D. Garcés and P.Valverde, "La minería en Ecuador. Pasado, presente y futuro," Boletín Geológico y Min, 132. 2021. https://doi.org/10.21701/bolgeomin.132.4.010
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Los Autores
Esta obra está bajo una licencia Creative Commons Reconocimiento 3.0 Unported.
Los artículos e investigaciones publicadas por la Universidad UTE, se realizan en régimen de Acceso Abierto [Open Access] en formato electrónico. Esto significa que todo el contenido está disponible de forma gratuita sin costo para el usuario o su institución. Los usuarios pueden leer, descargar, copiar, distribuir, imprimir, buscar o enlazar los textos completos de los artículos, o usarlos para cualquier otro propósito legal, sin necesidad de pedir permiso previo al editor o al autor. Esto está de acuerdo con la definición de acceso abierto de la Iniciativa de Acceso Abierto de Budapest (BOAI). Al enviar un artículo a cualquiera de las revistas científicas de la Universidad UTE, el o los autores aceptan estas condiciones.
La UTE aplica la licencia Creative Commons Attribution (CC-BY) a los artículos de sus revistas científicas. En virtud de esta licencia de acceso abierto, como autor usted acuerda que cualquier persona puede reutilizar su artículo en su totalidad o en parte para cualquier propósito, de forma gratuita, incluso para fines comerciales. Cualquiera puede copiar, distribuir o reutilizar el contenido siempre y cuando el autor y la fuente original estén correctamente citados. Esto facilita la libertad de reutilización y también asegura que el contenido pueda ser extraído sin barreras para necesidades de investigación.
Esta obra está bajo una Creative Commons Attribution 3.0 International (CC BY 3.0).
Además, la Revista Enfoque UTE garantiza y declara que los autores conservan siempre todos los derechos de autor y todos los derechos de publicación sin restricciones [© Los Autores]. El reconocimiento (BY) permite cualquier explotación de la obra, incluyendo una finalidad comercial, así como la creación de obras derivadas, la distribución de las cuales también está permitida sin ninguna restricción.