Redes Neuronales Artificiales en la Resolución de Problemas de Clasificación: Una Revisión Sistemática de la Literatura
DOI:
https://doi.org/10.29019/enfoqueute.1058Palabras clave:
redes neuronales artificiales, clasificación, aprendizaje automático, arquitectura redes neuronales, minería de datosResumen
Las redes neuronales artificiales (ANNs) se han convertido en herramientas indispensables para resolver tareas de clasificación en diversos dominios. Esta revisión sistemática de la literatura explora el panorama de la utilización de ANN en la clasificación, abordando tres preguntas clave de investigación: los tipos de arquitecturas empleadas, su precisión y los datos utilizados. La revisión abarca 30 estudios publicados entre 2019 y 2024, revelando las Redes Neuronales Convolucionales (CNNs) como la arquitectura predominante en tareas relacionadas con imágenes, seguidas por las arquitecturas de Perceptrón Multicapa (MLP) para tareas de clasificación en general. Las Redes Neuronales de Propagación Hacia Adelante (FFNN) exhibieron la mayor precisión promedio con un 97.12 %, con estudios específicos logrando resultados excepcionales en diversas tareas de clasificación. Además, la revisión identifica las imágenes digitalizadas como una fuente de datos comúnmente utilizada, reflejando la amplia aplicabilidad de las ANN en tareas como el diagnóstico médico y la teledetección. Los hallazgos subrayan la importancia de los enfoques de aprendizaje automático, destacan la robustez de las ANN en lograr una alta precisión y sugieren caminos para investigaciones futuras para mejorar la interpretabilidad, eficiencia y capacidades de generalización, así como abordar desafíos relacionados con la calidad de los datos.
Descargas
Citas
[1] I. H. Sarker, “Machine Learning: Algorithms, Real-World Applications and Research Directions,” SN Comput. Sci., vol. 2, no. 3, p. 160, May 2021. https://doi.org/10.1007/s42979-021-00592-x.
[2] J. Tanha, Y. Abdi, N. Samadi, N. Razzaghi and M. Asadpour, “Boosting methods for multi-class imbalanced data classification: an experimental review,” J. Big Data, vol. 7, no. 1, p. 70, Dec. 2020. https://doi.org/10.1186/s40537-020-00349-y.
[3] S. N. Bardab, T. M. Ahmed and T. A. A. Mohammed, “Data mining classification algorithms: An overview,” Int. J. Adv. Appl. Sci., vol. 8, no. 2, pp. 1-5, Feb. 2021, doi: https://doi.org/10.21833/ijaas.2021.02.001.
[4] I. Tougui, A. Jilbab, and J. El Mhamdi, “Heart disease classification using data mining tools and machine learning techniques,” Health Technol., vol. 10, no. 5, pp. 1137–1144, Sep. 2020. https://doi.org/10.1007/s12553-020-00438-1.
[5] B. Charbuty and A. Abdulazeez, “Classification Based on Decision Tree Algorithm for Machine Learning,” J. Appl. Sci. Technol. Trends, vol. 2, no. 01, pp. 20-28, Mar. 2021. https://doi.org/10.38094/jastt20165.
[6] M. Grandini, E. Bagli, and G. Visani, “Metrics for Multi-Class Classification: an Overview,” Aug. 13, 2020, arXiv: arXiv:2008.05756. https://doi.org/10.48550/arXiv.2008.05756
[7] A. Dogan and D. Birant, “Machine learning and data mining in manufacturing,” Expert Syst. Appl., vol. 166, p. 114060, Mar. 2021. https://doi.org/10.1016/j.eswa.2020.114060.
[8] D. Mustafa Abdullah and A. Mohsin Abdulazeez, “Machine Learning Applications based on SVM Classification A Review,” Qubahan Acad. J., vol. 1, no. 2, pp. 81-90, Apr. 2021. https://doi.org/10.48161/qaj.v1n2a50
[9] M. A. Rahman and R. C. Muniyandi, “An Enhancement in Cancer Classification Accuracy Using a Two-Step Feature Selection Method Based on Artificial Neural Networks with 15 Neurons,” Symmetry, vol. 12, no. 2, p. 271, Feb. 2020. https://doi.org/10.3390/sym12020271
[10] S. S., J. I. Zong Chen, and S. Shakya, “Survey on Neural Network Architectures with Deep Learning,” J. Soft Comput. Paradigm, vol. 2, no. 3, pp. 186-194, Jul. 2020. https://doi.org/10.36548/jscp.2020.3.007
[11] M. Tanveer, A. H. Rashid, R. Kumar and R. Balasubramanian, “Parkinson’s disease diagnosis using neural networks: Survey and comprehensive evaluation,” Inf. Process. Manag., vol. 59, no. 3, p. 102909, May 2022. https://doi.org/10.1016/j.ipm.2022.102909
[12] M. A. M. Sadeeq and A. M. Abdulazeez, “Neural Networks Architectures Design, and Applications: A Review,” in 2020 International Conference on Advanced Science and Engineering (ICOASE), Duhok, Iraq: IEEE, Dec. 2020, pp. 199-204. https://doi.org/10.1109/ICOASE51841.2020.9436582
[13] T. M. Berto, M. C. Santos, F. M. V. Pereira, and É. R. Filletti, “Artificial neural networks applied to the classification of hair samples according to pigment and sex using non‐invasive analytical techniques,” X-Ray Spectrom., vol. 49, no. 6, pp. 632-641, Nov. 2020. https://doi.org/10.1002/xrs.3163
[14] B. ElOuassif, A. Idri, M. Hosni and A. Abran, “Classification techniques in breast cancer diagnosis: A systematic literature review,” Comput. Methods Biomech. Biomed. Eng. Imaging Vis., vol. 9, no. 1, pp. 50-77, Jan. 2021. https://doi.org/10.1080/21681163.2020.1811159
[15] S. Bharati, P. Podder, and M. R. H. Mondal, “Artificial Neural Network Based Breast Cancer Screening: A Comprehensive Review,” 2020. https://doi.org/10.48550/arXiv.2006.01767
[16] D. M. Abdulqader, A. M. Abdulazeez, and D. Q. Zeebaree, “Machine Learning Supervised Algorithms of Gene Selection: A Review,” vol. 62, no. 03, 2020. ISSN: 04532198. Available: https://bit.ly/3X2O3w6
[17] M. A. Kassem, K. M. Hosny, R. Damaševičius and M. M. Eltoukhy, “Machine Learning and Deep Learning Methods for Skin Lesion Classification and Diagnosis: A Systematic Review,” Diagnostics, vol. 11, no. 8, p. 1390, Jul. 2021. https://doi.org/10.3390/diagnostics11081390
[18] R. I. Mukhamediev et al., “Review of Artificial Intelligence and Machine Learning Technologies: Classification, Restrictions, Opportunities and Challenges,” Mathematics, vol. 10, no. 15, p. 2552, Jul. 2022. https://doi.org/10.3390/math10152552
[19] L. A. Kahale et al., “Extension of the PRISMA 2020 statement for living systematic reviews (LSRs): protocol [version 2; peer review: 1 approved],” 2022. Available: https://f1000research.com/articles/11-109
[20] “Perform Systematic Literature Reviews,” Parsifal. Accessed: May 22, 2024. [Online]. Available: https://parsif.al/
[21] “Zotero | Your personal research assistant.” Accessed: May 22, 2024. [Online]. Available: https://www.zotero.org/
[22] D. A. Omondiagbe, S. Veeramani and A. S. Sidhu, “Machine Learning Classification Techniques for Breast Cancer Diagnosis,” IOP Conf. Ser. Mater. Sci. Eng., vol. 495, p. 012033, Jun. 2019. https://doi.org/10.1088/1757-899X/495/1/012033
[23] F. A. Rivera Sánchez and J. A. González Cervera, “ECG Classification Using Artificial Neural Networks,” J. Phys. Conf. Ser., vol. 1221, no. 1, p. 012062, Jun. 2019. https://doi.org/10.1088/1742-6596/1221/1/012062
[24] M. Haider Bin Abu Yazid, M. Shukor Talib and M. Haikal Satria, “Flower Pollination Neural Network for Heart Disease Classification,” IOP Conf. Ser. Mater. Sci. Eng., vol. 551, no. 1, p. 012072, Aug. 2019. https://doi.org/ 10.1088/1757-899X/551/1/012072
[25] E. Rehn, A. Rehn, and A. Possemiers, “Fossil charcoal particle identification and classification by two convolutional neural networks,” Quat. Sci. Rev., vol. 226, p. 106038, Dec. 2019. https://doi.org/10.1016/j.quascirev.2019.106038
[26] M. Iqbal, S. Ali, M. Abid, F. Majeed and A. Ali, “Artificial Neural Network based Emotion Classification and Recognition from Speech,” Int. J. Adv. Comput. Sci. Appl., vol. 11, no. 12, 2020. https://doi.org/10.14569/IJACSA.2020.0111253
[27] Y. Li, J. Di, K. Wang, S. Wang, and J. Zhao, “Classification of cell morphology with quantitative phase microscopy and machine learning,” Opt. Express, vol. 28, no. 16, p. 23916, Aug. 2020. https://doi.org/10.1364/OE.397029
[28] “Classification by artificial neural network for mushroom color changing under effect UV-A irradiation,” Carpathian J. Food Sci. Technol., pp. 152-162, Jun. 2020. https://doi.org/10.34302/crpjfst/2020.12.2.16
[29] A. N. Zaloga, V. V. Stanovov, O. E. Bezrukova, P. S. Dubinin and I. S. Yakimov, “Crystal symmetry classification from powder X-ray diffraction patterns using a convolutional neural network,” Mater. Today Commun., vol. 25, p. 101662, Dec. 2020. https://doi.org/ 10.1016/j.mtcomm.2020.101662
[30] X. Hu, P. Zhang, Q. Zhang and J. Wang, “Improving wetland cover classification using artificial neural networks with ensemble techniques,” GIScience Remote Sens., vol. 58, no. 4, pp. 603–623, May 2021. https://doi.org/10.1080/15481603.2021.1932126
[31] M. Koklu, I. Cinar and Y. S. Taspinar, “Classification of rice varieties with deep learning methods,” Comput. Electron. Agric., vol. 187, p. 106285, Aug. 2021. https://doi.org/10.1016/j.compag.2021.106285
[32] B. Hartpence and A. Kwasinski, “CNN and MLP neural network ensembles for packet classification and adversary defense,” Intell. Converg. Netw., vol. 2, no. 1, pp. 66-82, Mar. 2021. https://doi.org/10.23919/ICN.2020.0023
[33] V. Vives-Boix and D. Ruiz-Fernández, “Fundamentals of artificial metaplasticity in radial basis function networks for breast cancer classification,” Neural Comput. Appl., vol. 33, no. 19, pp. 12869-12880, Oct. 2021. https://doi.org/10.1007/s00521-021-05938-3.
[34] O. Majidzadeh Gorjani, R. Byrtus, J. Dohnal, P. Bilik, J. Koziorek and R. Martinek, “Human Activity Classification Using Multilayer Perceptron,” Sensors, vol. 21, no. 18, p. 6207, Sep. 2021. https://doi.org/ 10.3390/s21186207
[35] J. Rwigema, J. Mfitumukiza and K. Tae-Yong, “A hybrid approach of neural networks for age and gender classification through decision fusion,” Biomed. Signal Process. Control, vol. 66, p. 102459, Apr. 2021. https://doi.org/10.1016/j.bspc.2021.102459
[36] V. Totakura, E. Madhusudhana Reddy, and B. R. Vuribindi, “Symptomatically Brain Tumor Detection Using Convolutional Neural Networks,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1022, no. 1, p. 012078, Jan. 2021, doi: 10.1088/1757-899X/1022/1/012078.
[37] M. C. Guerrero, J. S. Parada, and H. E. Espitia, “EEG signal analysis using classification techniques: Logistic regression, artificial neural networks, support vector machines, and convolutional neural networks,” Heliyon, vol. 7, no. 6, p. e07258, Jun. 2021. https://doi.org/10.1016/j.heliyon.2021.e07258
[38] B. Anupama, S. L. Narayana and K. S. Rao, “Artificial neural network model for detection and classification of alcoholic patterns in EEG,” 2022. https://doi.org/10.1504/IJBRA.2022.121764
[39] S. Das, A. Wahi, S. M. Kumar, R. S. Mishra and S. Sundaramurthy, “Moment-Based Features of Knitted Cotton Fabric Defect Classification by Artificial Neural Networks,” J. Nat. Fibers, vol. 19, no. 4, pp. 1498-1506, Apr. 2022. https://doi.org/10.1080/15440478.2020.1779900
[40] Ł. Kostrzewa and R. Nowak, “Polish Court Ruling Classification Using Deep Neural Networks,” Sensors, vol. 22, no. 6, p. 2137, Mar. 2022. https://doi.org/ 10.3390/s22062137
[41] D. Nasien, V. Enjeslina, M. Hasmil Adiya and Z. Baharum, “Breast Cancer Prediction Using Artificial Neural Networks Back Propagation Method,” J. Phys. Conf. Ser., vol. 2319, no. 1, p. 012025, Aug. 2022. https://doi.org/ 10.1088/1742-6596/2319/1/012025
[42] B. F. Alkhamees, “An Optimized Single Layer Perceptron-based Approach for Cardiotocography Data Classification,” Int. J. Adv. Comput. Sci. Appl., vol. 13, no. 10, 2022. https://doi.org/10.14569/IJACSA.2022.0131030
[43] S. Cao, S. Zhou, J. Liu, X. Liu, and Y. Zhou, “Wood classification study based on thermal physical parameters with intelligent method of artificial neural networks,” BioResources, vol. 17, no. 1, pp. 1187-1204, Jan. 2022. https://doi.org/10.15376/biores.17.1.1187-1204
[44] J. Leško, R. Andoga, R. Bréda, M. Hlinková and L. Fözö, “Flight phase classification for small unmanned aerial vehicles,” Aviation, vol. 27, no. 2, pp. 75-85, May 2023. https://doi.org/10.3846/aviation.2023.18909
[45] M. Ahmed, N. Afreen, M. Ahmed, M. Sameer, and J. Ahamed, “An inception V3 approach for malware classification using machine learning and transfer learning,” Int. J. Intell. Netw., vol. 4, pp. 11-18, 2023, https://doi.org/10.1016/j.ijin.2022.11.005
[46] N. N. M. Azam, M. A. Ismail, M. S. Mohamad, A. O. Ibrahim, and S. Jeba, “Classification of COVID-19 Symptoms Using Multilayer Perceptron,” Iraqi J. Comput. Sci. Math., pp. 100-110, Oct. 2023. https://doi.org/ 10.52866/ijcsm.2023.04.04.009
[47] Faculty of Electrical and Electronics Engineering, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, Vietnam, N. Tran-Thi-Kim, T. Pham-Viet, I. Koo, V. Mariano and T. Do-Hong, “Enhancing the Classification Accuracy of Rice Varieties by Using Convolutional Neural Networks,” Int. J. Electr. Electron. Eng. Telecommun., pp. 150-160, 2023. https://doi.org/10.18178/ijeetc.12.2.150-160
[48] M. Hasanat, W. Khan, N. Minallah, N. Aziz, and A.-U.-R. Durrani, “Performance evaluation of transfer learning based deep convolutional neural network with limited fused spectro-temporal data for land cover classification,” Int. J. Electr. Comput. Eng. IJECE, vol. 13, no. 6, p. 6882, Dec. 2023. https://doi.org/10.11591/ijece.v13i6.pp6882-6890
[49] R. Chavan and D. Pete, “Automatic multi-disease classification on retinal images using multilevel glowworm swarm convolutional neural network,” J. Eng. Appl. Sci., vol. 71, no. 1, p. 26, Dec. 2024. https://doi.org/10.1186/s44147-023-00335-0
[50] S. Susanto and D. S. Nanda, “Predicting the classification of high vowel sound by using artificial neural network: a study in forensic linguistics,” IAES Int. J. Artif. Intell. IJ-AI, vol. 13, no. 1, p. 195, Mar. 2024. https://doi.org/10.11591/ijai.v13.i1.pp195-200
[51] K.-L. Du and M. N. S. Swamy, Neural Networks and Statistical Learning. London: Springer London, 2019. https://doi.org/10.1007/978-1-4471-7452-3
[52] A. Mohammadazadeh, M. H. Sabzalian, O. Castillo, R. Sakthivel, F. F. M. El-Sousy and S. Mobayen, Neural Networks and Learning Algorithms in MATLAB. in Synthesis Lectures on Intelligent Technologies. Cham: Springer International Publishing, 2022. https://doi.org/10.1007/978-3-031-14571-1
[53] N. Assani, P. Matić, N. Kaštelan and I. R. Čavka, “A Review of Artificial Neural Networks Applications in Maritime Industry,” IEEE Access, vol. 11, pp. 139823-139848, 2023. https://doi.org/10.1109/ACCESS.2023.3341690
[54] X. Wang, W. Tian, and Z. Liao, “Framework for Hyperparameter Impact Analysis and Selection for Water Resources Feedforward Neural Network,” Water Resour. Manag., vol. 36, no. 11, pp. 4201-4217, Sep. 2022. https://doi.org/10.1007/s11269-022-03248-4
[55] I. Fostiropoulos, B. Brown, and L. Itti, “Trustworthy model evaluation on a budgeT,” 2023.
[56] H. Ali et al., “Machine Learning-Enabled NIR Spectroscopy. Part 3: Hyperparameter by Design (HyD) Based ANN-MLP Optimization, Model Generalizability, and Model Transferability,” AAPS PharmSciTech, vol. 24, no. 8, p. 254, Dec. 2023. https://doi.org/10.1208/s12249-023-02697-3
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Los Autores
Esta obra está bajo una licencia Creative Commons Reconocimiento 3.0 Unported.
Los artículos e investigaciones publicadas por la Universidad UTE, se realizan en régimen de Acceso Abierto [Open Access] en formato electrónico. Esto significa que todo el contenido está disponible de forma gratuita sin costo para el usuario o su institución. Los usuarios pueden leer, descargar, copiar, distribuir, imprimir, buscar o enlazar los textos completos de los artículos, o usarlos para cualquier otro propósito legal, sin necesidad de pedir permiso previo al editor o al autor. Esto está de acuerdo con la definición de acceso abierto de la Iniciativa de Acceso Abierto de Budapest (BOAI). Al enviar un artículo a cualquiera de las revistas científicas de la Universidad UTE, el o los autores aceptan estas condiciones.
La UTE aplica la licencia Creative Commons Attribution (CC-BY) a los artículos de sus revistas científicas. En virtud de esta licencia de acceso abierto, como autor usted acuerda que cualquier persona puede reutilizar su artículo en su totalidad o en parte para cualquier propósito, de forma gratuita, incluso para fines comerciales. Cualquiera puede copiar, distribuir o reutilizar el contenido siempre y cuando el autor y la fuente original estén correctamente citados. Esto facilita la libertad de reutilización y también asegura que el contenido pueda ser extraído sin barreras para necesidades de investigación.
Esta obra está bajo una Creative Commons Attribution 3.0 International (CC BY 3.0).
Además, la Revista Enfoque UTE garantiza y declara que los autores conservan siempre todos los derechos de autor y todos los derechos de publicación sin restricciones [© Los Autores]. El reconocimiento (BY) permite cualquier explotación de la obra, incluyendo una finalidad comercial, así como la creación de obras derivadas, la distribución de las cuales también está permitida sin ninguna restricción.