Coagulación natural para la descontaminación de efluentes industriales

Autores/as

  • Carlos Banchón Universidad Agraria del Ecuador
  • Ricardo Baquerizo Escuela Superior Politécnica del Litoral
  • Diego Muñoz Universidad Agraria del Ecuador
  • Leila Zambrano Universidad Agraria del Ecuador

DOI:

https://doi.org/10.29019/enfoqueute.v7n4.118

Palabras clave:

Textileras, curtiembres, coagulación, taninos, moringa, guarango

Resumen

La contaminación industrial y agrícola ha generado indudablemente un alto impacto ambiental en los recursos naturales de nuestro planeta. Se prevé carencias en la provisión de agua para consumo humano debido a la contaminación de fuentes naturales. En respuesta a esto, la aplicación de coagulantes de hierro y aluminio son la primera opción para el tratamiento de aguas residuales. No obstante, el uso abundante de aluminio es objeto de discusión debido a la posible afectación al ser humano. Por tanto, el presente artículo destaca los últimos avances en el campo de la coagulación natural, una tecnología ancestral utilizada para la descontaminación del agua. Su demostrada efectividad se fundamenta en mecanismos de desestabilización electrocinética que remueven la turbidez hasta un 99%. Evidencias experimentales coinciden que concentraciones de taninos y mucílagos permiten la remediación de efluentes de industrias químicas como textileras y de curtiembres.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Aguilar-Gálvez, A., Noratto, G., Chambi, F., Debaste, F., & Campos, D. (2014). Potential of tara (Caesalpinia spinosa) gallotannins and hydrolysates as natural antibacterial compounds. Food Chem, 156, 301-304. doi:10.1016/j.foodchem.2014.01.110
Aho, I. M., & Agunwamba, J. C. (2015). Use of Water Extract of Moringa Oleifera Seeds (WEMOS) in Raw Water Treatment in Makurdi, Nigeria. Global Journal of Engineering Research, 13, 41–45.
Al Samawi, A. A., & Shokralla, E. M. (1996). An investigation into an indigenous natural coagulant. Journal of Environmental Science and Health . Part A: Environmental Science and Engineering and Toxicology, 31, 1881-1897. doi:10.1080/10934529609376463
Anwar, F., & Rashid, U. (2007). Physico-chemical characteristics of Moringa oleifera seeds and seed oil from a wild provenance of Pakistan. Pak. J. Bot, 39, 1443–1453.
Attard, P. (2001). Recent advances in the electric double layer in colloid science. Current Opinion in Colloid & Interface Science, 6(4), 366-371. doi:http://dx.doi.org/10.1016/S1359-0294(01)00102-9
Bahmani, P., Rezaei Kalantary, R., Esrafili, A., Gholami, M., & Jonidi Jafari, A. (2013). Evaluation of Fenton oxidation process coupled with biological treatment for the removal of reactive black 5 from aqueous solution. Journal of Environmental Health Science and Engineering, 11, 13-13. doi:10.1186/2052-336X-11-13
Baptista, A. T. A., Coldebella, P. F., Cardines, P. H. F., Gomes, R. G., Vieira, M. F., Bergamasco, R., & Vieira, A. M. S. (2015). Coagulation–flocculation process with ultrafiltered saline extract of Moringa oleifera for the treatment of surface water. Chemical Engineering Journal, 276, 166-173. doi:10.1016/j.cej.2015.04.045
Bazrafshan, E., Mostafapour, F. K., Ahmadabadi, M., & Mahvi, A. H. (2015). Turbidity removal from aqueous environments byPistacia atlantica(Baneh) seed extract as a natural organic coagulant aid. Desalination and Water Treatment, 56, 977-983. doi:10.1080/19443994.2014.942704
Beltrán-Heredia, J., Sánchez-Martín, J., & Gómez-Muñoz, M. C. (2010). New coagulant agents from tannin extracts: Preliminary optimisation studies. Chemical Engineering Journal, 162, 1019-1025. doi:10.1016/j.cej.2010.07.011
Bouasla, C., Ismail, F., & Samar, M. E.-H. (2012). Effects of operator parameters, anions and cations on the degradation of AY99 in an aqueous solution using Fenton’s reagent. Optimization and kinetics study. International Journal of Industrial Chemistry, 3(1), 1-11. doi:10.1186/2228-5547-3-15
Bratby, J. (1980). Coagulation and flocculation. Uplands: Croydon, England.
Chowdhury, P., Viraraghavan, T., & Srinivasan, A. (2010). Biological treatment processes for fish processing wastewater – A review. Bioresource Technology, 101, 439-449. doi:10.1016/j.biortech.2009.08.065
Choy, S. Y., Prasad, K. M. N., Wu, T. Y., Raghunandan, M. E., & Ramanan, R. N. (2014). Utilization of plant-based natural coagulants as future alternatives towards sustainable water clarification. Journal of Environmental Sciences, 26, 2178-2189. doi:10.1016/j.jes.2014.09.024
Corcoran, E., Nellemann, C., Baker, E., Bos, R., Osborn, D., & Savelli, H. (2010). Sick water?: the central role of wastewater management in sustainable development: a rapid response assessment (E. Corcoran, C. Nellemann, E. Baker, R. Bos, D. Osborn, & H. Savelli Eds.). Arendal, Norway: UNEP/GRID-Arendal.
Daud, N. K., Akpan, U. G., & Hameed, B. H. (2012). Decolorization of Sunzol Black DN conc. in aqueous solution by Fenton oxidation process: effect of system parameters and kinetic study. Desalination and Water Treatment, 37(1-3), 1-7. doi:10.1080/19443994.2012.661246
El-Bestawy, E., Al-Fassi, F., Amer, R., & Aburokba, R. (2013). Biological Treatment of Leather-Tanning Industrial Wastewater Using Free Living Bacteria. Advances in Life Science and Technology, 12, 46-65.
Freitas, T. K. F. S., Oliveira, V. M., de Souza, M. T. F., Geraldino, H. C. L., Almeida, V. C., Fávaro, S. L., & Garcia, J. C. (2015). Optimization of coagulation-flocculation process for treatment of industrial textile wastewater using okra (A. esculentus) mucilage as natural coagulant. Industrial Crops and Products, 76, 538-544. doi:10.1016/j.indcrop.2015.06.027
Gatew, S., & Mersha, W. (2013). Tannery waste water treatment using Moringa stenopetala seed powder extract. Wyno Academic Journal of Physical Science, 1, 1–8.
Grekova-Vasileva, M., & Topalova, Y. (2014). Biological Algorithms for Textile Wastewater Management. Biotechnology & Biotechnological Equipment, 23(sup1), 442-447. doi:10.1080/13102818.2009.10818459
Hadley, E. H. (2014). Mucilage. Retrieved from http://www.accessscience.com/content/mucilage/437200 doi:10.1036/1097-8542.437200
Harris, J., & McCartor, A. (2011). The World’s Worst Toxic Pollution Problems. Retrieved from www.worstpolluted.org: www.worstpolluted.org
Jahn, S. A. A., & Dirar, H. (1979). Studies on natural water coagulants in the Sudan, with special reference to Moringa oleifera seeds. Water Sa, 5(2), 90-97.
Kazi, T., & Virupakshi, A. (2013). Treatment of Tannery Wastewater Using Natural Coagulants. International Journal of Innovative Research in Science, Engineering and Technology, Vol. 2(8), 4061-4068.
Khanbabaee, K., & van Ree, T. (2001). Tannins: classification and definition. Natural Product Reports, 18, 641–649.
Korbahti, B. K., & Tanyolac, A. (2008). Electrochemical treatment of simulated textile wastewater with industrial components and Levafix Blue CA reactive dye: optimization through response surface methodology. J Hazard Mater, 151(2-3), 422-431. doi:10.1016/j.jhazmat.2007.06.010
Krewski, D., Yokel, R. A., Nieboer, E., Borchelt, D., Cohen, J., Harry, J., . . . Rondeau, V. (2007). Human health risk assessment for aluminium, aluminium oxide, and aluminium hydroxide. J Toxicol Environ Health B Crit Rev, 10 Suppl 1, 1-269. doi:10.1080/10937400701597766
Le Borgne, S., Paniagua, D., & Vazquez-Duhalt, R. (2008). Biodegradation of organic pollutants by halophilic bacteria and archaea. J Mol Microbiol Biotechnol, 15(2-3), 74-92. doi:10.1159/000121323
Lea, M. (2014). Bioremediation of Turbid Surface Water Using Seed Extract from the Moringa oleifera Lam. (Drumstick) Tree. Curr Protoc Microbiol, 33, 1G 2 1-8. doi:10.1002/9780471729259.mc01g02s33
Lefebvre, O., & Moletta, R. (2006). Treatment of organic pollution in industrial saline wastewater: a literature review. Water Res, 40(20), 3671-3682. doi:10.1016/j.watres.2006.08.027
Liang, Y., Hilal, N., Langston, P., & Starov, V. (2007). Interaction forces between colloidal particles in liquid: Theory and experiment. Advances in Colloid and Interface Science, 134-135, 151-166. doi:10.1016/j.cis.2007.04.003
Madoni, P. (2011). Protozoa in wastewater treatment processes: A minireview. Italian Journal of Zoology, 78, 3-11. doi:10.1080/11250000903373797
Mancero, L. (2008). La tara (Caesalpinia spinosa) en Perú, Bolivia y Ecuador: Análisis de la cadena productiva en la región (G. Medina & P. d. Rham Eds. Vol. 1). Quito.
Mangale Sapana, M., Chonde Sonal, G., & Raut, P. D. (2012). Use of Moringa oleifera (drumstick) seed as natural absorbent and an antimicrobial agent for ground water treatment. Research Journal of Recent Sciences, 2277, 2502.
Matilainen, A., Vepsäläinen, M., & Sillanpää, M. (2010). Natural organic matter removal by coagulation during drinking water treatment: A review. Advances in Colloid and Interface Science, 159, 189-197. doi:10.1016/j.cis.2010.06.007
Mavura, W., Chemelil, M., Saenyi, W., & Mavura, H. (2008). Investigation of chemical and biochemical properties of Maerua subcordata. Bulletin of the Chemical Society of Ethiopia, 22(1).
Mwinyihija, M. (2010). Main Pollutants and Environmental Impacts of the Tanning Industry Ecotoxicological Diagnosis in the Tanning Industry (pp. 17-35). New York, NY: Springer New York.
Okuda, T., & Ito, H. (2011). Tannins of Constant Structure in Medicinal and Food Plants—Hydrolyzable Tannins and Polyphenols Related to Tannins. Molecules, 16, 2191-2217. doi:10.3390/molecules16032191
Pallavi, N., & Mahesh, S. (2013). Feasibility study of Moringa oleifera as a natural coagulant for the treatment of dairy wastewater. International Journal of Engineering Research, 2, 200–202.
Paredes, L., & Banchón, C. (2015). Tannery liming drum wastewater treatment by natural coagulants from C. spinosa, P. granatum, Eucalyptus spp. and V. vinifera. International Journal of Current Research, 7, 14843–14849.
PNUMA. (2010). PNUMA anuario 2010: avances y progresos científicos en nuestro cambiante medio ambiente. Retrieved from http://www.unep.org/yearbook/2010
Revelo, A., Proaño, D., & Banchón, C. (2015). Biocoagulación de aguas residuales de industria textilera mediante extractos de Caesalpinia spinosa. Enfoque UTE, 6(1), 12.
Salvado, H., Mas, M., Menendez, S., & Gracia, M. P. (2001). Effects of shock loads of salt on protozoan communities of activated sludge. Acta Protozoologica, 40(3), 177–186.
Sanghi, R., Bhatttacharya, B., & Singh, V. (2002). Cassia angustifolia seed gum as an effective natural coagulant for decolourisation of dye solutions. Green Chemistry, 4(3), 252-254. doi:10.1039/b200067a
Shak, K. P. Y., & Wu, T. Y. (2014). Coagulation–flocculation treatment of high-strength agro-industrial wastewater using natural Cassia obtusifolia seed gum: Treatment efficiencies and flocs characterization. Chemical Engineering Journal, 256, 293-305. doi:10.1016/j.cej.2014.06.093
Shammas, N. K. (2005). Coagulation and flocculation Physicochemical treatment processes (pp. 103–139): Springer.
Shamsnejati, S., Chaibakhsh, N., Pendashteh, A. R., & Hayeripour, S. (2015). Mucilaginous seed of Ocimum basilicum as a natural coagulant for textile wastewater treatment. Industrial Crops and Products, 69, 40-47. doi:10.1016/j.indcrop.2015.01.045
Simate, G. S., Iyuke, S. E., Ndlovu, S., Heydenrych, M., & Walubita, L. F. (2012). Human health effects of residual carbon nanotubes and traditional water treatment chemicals in drinking water. Environ Int, 39(1), 38-49. doi:10.1016/j.envint.2011.09.006
Sotheeswaran, S., Nand, V., Matakite, M., & Kanayathu, K. (2011). Moringa oleifera and other local seeds in water purification in developing countries. Research Journal of Chemistry and Environment, 15, 2.
Subbaramiah, K., & Rao, B. S. (1937). The mechanisms of the clarification of muddy water byStrychnos potatorum seeds. Proceedings of the Indian Academy of Sciences - Section A, 6(1), 59-70. doi:10.1007/bf03051236
Tripathi, P., Chaudhuri, N., & Bokil, S. (1976). Nirmali seed a naturally occurring coagulant. Indian J. Environ. Health, 18(4).
UNEP. (2008). Vital Water Graphics - An Overview of the State of the World’s Fresh and Marine Waters (2nd Edition ed.): United Nations Environment Programme, Nairobi, Kenya.
UNWATER. (2013). Water Scarcity factsheet: United Nations inter-agency coordination mechanism for all freshwater related issues.
UNWWAP. (2015). The United Nations World Water Development Report 2015: Water for a Sustainable World. Retrieved from
Vishali, S., & Karthikeyan, R. (2015). Cactus opuntia(ficus-indica): an eco-friendly alternative coagulant in the treatment of paint effluent. Desalination and Water Treatment, 56, 1489-1497. doi:10.1080/19443994.2014.945487
WHO. (1998). Guidelines for drinking-water quality. Retrieved from Geneva: World Health Organization
Wu, Y., Ding, W., Jia, L., & He, Q. (2015). The rheological properties of tara gum (Caesalpinia spinosa). Food Chemistry, 168, 366-371. doi:10.1016/j.foodchem.2014.07.083
Yarahmadi, M., Hossieni, M., Bina, B., Mahmoudian, M. H., Naimabadie, A., Shahsavani, A., & others. (2009). Application of Moringa oleifera seed extract and poly aluminium chloride in water treatment. World Appl Sci J, 7, 962–967.
Yin, C.-Y. (2010). Emerging usage of plant-based coagulants for water and wastewater treatment. Process Biochemistry, 45, 1437-1444. doi:10.1016/j.procbio.2010.05.030

Descargas

Publicado

2016-12-15

Cómo citar

Banchón, C., Baquerizo, R., Muñoz, D., & Zambrano, L. (2016). Coagulación natural para la descontaminación de efluentes industriales. Enfoque UTE, 7(4), pp. 111 – 126. https://doi.org/10.29019/enfoqueute.v7n4.118

Número

Sección

Misceláneos