El Filtro Extendido de Kalman en la Estimación de Estado Dinámica de Sistemas Eléctricos de Potencia
DOI:
https://doi.org/10.29019/enfoqueute.v9n4.407Palabras clave:
Estimación de estados, Sistemas eléctricos de potencia, Filtro extendido de Kalman, Alisado exponencial lineal de Holt, Índices de performance, Caso de prueba IEEE de 14 barras, Caso de prueba IEEE de 30 barrasResumen
La estimación de estado y el análisis de flujo de carga son tópicos muy importantes en el análisis y control de un Sistema Eléctrico de Potencia (SEP). Este artículo describe la estimación de estados usando el Filtro Extendido de Kalman (EKF) y el método de Holt para linealizar el modelo del proceso y entonces calcular el índice de error del rendimiento del filtro como un indicador de su exactitud. Además, este índice de error calculado puede ser usado como una referencia en posteriores estudios de comparación entre diferentes metodologías usadas en la estimación de estados en SEP tales como el Unscented Filtro de Kalman, el Ensemble Filtro de Kalman, métodos de Montecarlo, y otros. Los resultados del índice de error obtenidos en el proceso de simulación están de acuerdo al orden de magnitud esperado y el comportamiento del filtro es adecuado ya que sigue adecuadamente al valor verdadero de las variables de estado. La simulación fue realizada usando Matlab y el sistema eléctrico usado corresponde a los sistemas de prueba IEEE de 14 y 30 barras. Las variables de estado a considerar en este estudio son la magnitud del voltaje.
Descargas
Citas
Debs, A.S., and Larson, R.E. (1970). “A Dynamic Estimator for Tracking the State of a Power System”. IEEE Transactions on Power Apparatus and Systems, PAS-89(7), p. 1670-1678. http://dx.doi.org/10.1109/TPAS.1970.292822
Huang, Y.F., Werner, S., Huang J., Kashyap N., and Gupta V. (2012). “State Estimation in Electric Power Grids: Meeting New Challenges Presented by the Requirements of the Future Grid”. IEEE Signal Processing Magazine, 29(5), p. 33-43. http://dx.doi.org/10.1109/MSP.2012.2187037
Leite da Silva, A.M., Do Coutto Filho, M.B., and De Queiroz, J.F. (1983). “State forecasting in electric power systems”. IEEE Proceedings C – Generation, Transmission and Distribution, 130(5), p. 237-244. http://dx.doi.org/10.1049/ip-c:19830046
Nguyen, H., Venayagamoorthy, G., Kling, W. and Ribeiro, P. (2013). Dynamic state estimation and prediction for real-time control and operation. Power Systems Conference (PS13). Technische Universiteit Eindhoven.
Schweppe, F., and Wildes, J. (1970). “Power System Static-State Estimation, Part I: Exact Model”. IEEE Transactions on Power Apparatus and Systems, PAS-89(1), p. 120-125. http://dx.doi.org/10.1109/TPAS.1970.292678. Recuperado de htttp://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4074022 (accedido el 20/02/2018).
Sharma, A., Srivastava, S.C., and Chakrabarti, S. (2017). “A Cubature Kalman Filter Based Power System Dynamic State Estimator”. IEEE Transactions on Instrumentation and Measurement, 66(8), p. 2036-2045. http://dx.doi.org/10.1109/TIM.2017.2677698
University of Washington. (1993). “IEEE 14 bus test case”. Recuperado de http://www2.ee.washington.edu/research/pstca/pf14/ieee14cdf.txt (accedido el 20/03/2018).
Valverde, G., and Terzija, V. (2011). “Unscented kalman filter for power system dynamic state estimation”. Generation, Transmission & Distribution IET, 5(1), p. 29-37. http://dx.doi.org/10.1049/iet-gtd.2010.0210.
Zanni. L., Le Boudec, J.Y., Cherkaoui, R., and Paolone, M. (2017). “A Prediction-Error Covariance Estimator for Adaptive Kalman Filtering in Step-Varying Processes: Application to Power-System State Estimation”. IEEE Transactions on Control Systems Technology, 25(5). http://dx.doi.org/10.1109/TCST.2016.2628716.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Los artículos e investigaciones publicadas por la Universidad UTE, se realizan en régimen de Acceso Abierto [Open Access] en formato electrónico. Esto significa que todo el contenido está disponible de forma gratuita sin costo para el usuario o su institución. Los usuarios pueden leer, descargar, copiar, distribuir, imprimir, buscar o enlazar los textos completos de los artículos, o usarlos para cualquier otro propósito legal, sin necesidad de pedir permiso previo al editor o al autor. Esto está de acuerdo con la definición de acceso abierto de la Iniciativa de Acceso Abierto de Budapest (BOAI). Al enviar un artículo a cualquiera de las revistas científicas de la Universidad UTE, el o los autores aceptan estas condiciones.
La UTE aplica la licencia Creative Commons Attribution (CC-BY) a los artículos de sus revistas científicas. En virtud de esta licencia de acceso abierto, como autor usted acuerda que cualquier persona puede reutilizar su artículo en su totalidad o en parte para cualquier propósito, de forma gratuita, incluso para fines comerciales. Cualquiera puede copiar, distribuir o reutilizar el contenido siempre y cuando el autor y la fuente original estén correctamente citados. Esto facilita la libertad de reutilización y también asegura que el contenido pueda ser extraído sin barreras para necesidades de investigación.
Esta obra está bajo una Creative Commons Attribution 3.0 International (CC BY 3.0).
Además, la Revista Enfoque UTE garantiza y declara que los autores conservan siempre todos los derechos de autor y todos los derechos de publicación sin restricciones [© Los Autores]. El reconocimiento (BY) permite cualquier explotación de la obra, incluyendo una finalidad comercial, así como la creación de obras derivadas, la distribución de las cuales también está permitida sin ninguna restricción.