Comparación de algoritmos de máquinas de aprendizaje para la detección de arrecife de coral
DOI:
https://doi.org/10.29019/enfoqueute.v5n3.43Palabras clave:
Coralbot, arrecife de coral, máquinas de aprendizaje, filtros Gabor WaveletsResumen
(Recibido: 2014/07/31 - Aceptado: 2014/09/23)
El presente trabajo se enfoca en el desarrollo de un detector de coral de desempeño rápido que se utiliza para un vehículo autónomo submarino (AUV, por sus siglas en inglés). Una detección rápida de coral garantiza la estabilización del AUV en las cercanías del arrecife de coral en el menor tiempo posible, evitando que la desorientación del AUV destruya al arrecife. En este trabajo se usó la investigación de Purser, Bergmann, Lundälv, Ontrup, & Nattkemper (2009), por su precisión. Este detector consta de una parte de extracción de vectores característicos, la cual se realiza con filtros Gabor Wavelets; y una parte de clasificación de vectores que usa máquinas de aprendizaje, basado en Redes Neuronales. Debido al extenso tiempo de ejecución de las Redes Neuronales, se reemplazaron por un algoritmo de clasificación basado en Árboles de Decisión. Se utilizó una base de datos de 621 imágenes de corales de Belice (110 imágenes de entrenamiento y 511 imágenes de prueba). Se implementó un banco de filtros Gabor Wavelets utilizando C++ y la librería OpenCV. Se realizó la comparación de la precisión y el tiempo de ejecución de 9 algoritmos de máquinas de aprendizaje, cuyo resultado fue la selección del algoritmo de Árboles de Decisión. Nuestro detector de coral posee un tiempo de ejecución de 70ms en comparación con 22s desarrollados por el algoritmo de Purser et al. (2009).
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Los artículos e investigaciones publicadas por la Universidad UTE, se realizan en régimen de Acceso Abierto [Open Access] en formato electrónico. Esto significa que todo el contenido está disponible de forma gratuita sin costo para el usuario o su institución. Los usuarios pueden leer, descargar, copiar, distribuir, imprimir, buscar o enlazar los textos completos de los artículos, o usarlos para cualquier otro propósito legal, sin necesidad de pedir permiso previo al editor o al autor. Esto está de acuerdo con la definición de acceso abierto de la Iniciativa de Acceso Abierto de Budapest (BOAI). Al enviar un artículo a cualquiera de las revistas científicas de la Universidad UTE, el o los autores aceptan estas condiciones.
La UTE aplica la licencia Creative Commons Attribution (CC-BY) a los artículos de sus revistas científicas. En virtud de esta licencia de acceso abierto, como autor usted acuerda que cualquier persona puede reutilizar su artículo en su totalidad o en parte para cualquier propósito, de forma gratuita, incluso para fines comerciales. Cualquiera puede copiar, distribuir o reutilizar el contenido siempre y cuando el autor y la fuente original estén correctamente citados. Esto facilita la libertad de reutilización y también asegura que el contenido pueda ser extraído sin barreras para necesidades de investigación.
Esta obra está bajo una Creative Commons Attribution 3.0 International (CC BY 3.0).
Además, la Revista Enfoque UTE garantiza y declara que los autores conservan siempre todos los derechos de autor y todos los derechos de publicación sin restricciones [© Los Autores]. El reconocimiento (BY) permite cualquier explotación de la obra, incluyendo una finalidad comercial, así como la creación de obras derivadas, la distribución de las cuales también está permitida sin ninguna restricción.