Análisis CFD de un colector de placa plana con distintas secciones transversales
DOI:
https://doi.org/10.29019/enfoque.v11n2.601Palabras clave:
Colector solar, sección transversal, eficiencia, ANSYS Fluent, CFD.Resumen
Los sistemas de calefacción solar utilizados para propósitos industriales y domésticos como sistemas de calentamiento de agua y sistemas de calefacción, generalmente utilizan colectores solares de placa plana para absorber la energía solar térmica convirtiéndola en calor para luego transferir el calor a un fluido (generalmente agua o aire) que circula a través de él. El presente artículo evalúa la eficiencia del colector solar de placa plana, así como el comportamiento del fluido (agua o aire) dentro de la tubería con tres diferentes secciones transversales, cuyos diámetros hidráulicos son 10, 5.12 y 6.16 mm, utilizando ANSYS Fluent. Los resultados obtenidos con herramienta Computational Fluid Dynamics (CFD) mostraron que el colector con la sección transversal Tipo I alcanzó temperaturas de hasta 330 K en la salida de la tubería, obteniendo una eficiencia del 68 %, superior a la de los Tipos II y III, cuyas eficiencias fueron de 51 % y 60 %, respectivamente. La sección transversal del Tipo I también presentó los valores más bajos, tanto en velocidad como en caída de presión, con valores de 0.266 m/s y 108.3 Pa, respectivamente.
Descargas
Citas
ANSYS Fluent Theory Guide 12.0. (2009, Abril).
ANSYS Fluent User Guide. (2012, Noviembre).
Basavanna, S., & Shashishekar, K. (2013). CFD Analysis of triangular absorber tube of a solar flat plate collector. International Journal of Mechanical Engineering and Robotics Research, 2 (1): 19-24.
Birhanu, G., Ramayya, A. & Shunki, G. (2016). Computational Fluid Dynamic Simulation and Experimental Testing of a Serpentine Flat Plate Solar Water Heater. International Journal of Scientific & Engineering Research, 7 (10): 320-333.
Eisenmann, W., Wiese, F., Vajen, K. & Ackermann, H. (2000). Experimental investigations of serpentine-flow flat-plate collectors. Philipps-Universität Marburg, D-35032 Marburg, Germany.
Gunjo, D. G., Mahanta, P. & Robi, P. S. (2017). CFD and experimental investigation of flat plate solar water heating system under steady state condition. Renewable Energy, 106: 24-36.
Ingle, P., Pawar, A., Deshmukh, B. & Bhosale, K. (2013). CFD Analysis of Solar Flat Plate Collector. International Journal of Emerging Technology and Advanced Engineering, 3 (4): 337-342.
Kannan, N., & Vakeesan, D. (2016). Solar energy for future world: -A review. Renewable and Sustainable Energy Reviews, 62: 1092-1106.
Karanth, K., Madhwesh , N., Kumar, S. & Manjunath, M. (2015). Numerical and experimental study of a solar water heater for enhancement in thermal performance. International Journal of Research in Engineering and Technology, 4 (3): 548-553.
Li, Q., Liu, Y., Guo, S. & Zhou, H. (2017). Solar energy storage in the rechargeable batteries. Nano Today, 16: 46-60.
Madhukeshwara, N. & Prakash, E. (2012). An investigation on the performance characteristics of solar flat plate collector with different selective surface coatings. International Journal of Energy & Environment, 3: 99-108.
Marroquín-De Jesús, Á., Olivares-Ramírez, J. M., Jiménez-Sandoval, O., Zamora-Antuñano, M. A. & Encinas-Oropesa , A. (2013). Analysis of Flow and Heat Transfer in a Flat Solar Collector with Rectangular and Cylindrical Geometry Using CFD. Ingeniería Investigación y Tecnología, 14 (4): 553-561.
Matrawy, K. K. & Farkas, I. (1997). Comparison study for three types of solar collector for water heating. Energy Conversion and Management, 38: 861–869.
Mesa, F. (2006). Colector solar de placa plana. Bogotá: Energía Solar.
Muhammed Yarshi, K. A. & Benny, P. (2015). Analysis of Heat Transfer Performance of Flat Plate Solar Collector using CFD. International Journal of Science, Engineering and Technology Research, 4 (10): 3576-3580.
Mukesh Manilal, K. (2016). Design, CFD Analysis and Fabrication of Solar Flat Plate Collector. International Research Journal of Engineering and Technology, 3 (1): 1000-1004.
Myrna, D. K. S., & Beckman, W. (1998). Analysis of serpentine collectors in low flow systems. Solar Energy Laboratory University of Wisconsin-Madison 1500 Engineering Drive Madison, WI 53706.
Prakash, B., Vishnuprasad, B. & Ramana, V. (2013). Performance study on effect of nano coatings on liquid flat plate collector: An experimental approach. International Journal of Mechanical Engineering and Robotics Research, 2 (4): 379-384.
Prasad, P., Byregowda, H. & Gangavati, P. (2010). Experiment Analysis of Flat Plate Collector and Comparison of Performance with Tracking Collector. European Journal of Scientific Research, 40 (1): 144-155.
Ranjitha, P., Somashekar, V. & Jamuna, A. (2013). Analysis of Solar Flat Plate Collector for Circular Pipe Configuration by using CFD. International Journal of Engineering Research & Technology (IJERT), 2(12), 3356-3362.
Selmi, M., Al-Khawaja, M. & Marafia, A. (2008). Validation of CFD simulation for flat plate solar energy collector. Renewable Energy, 33 (3): 383-387.
Shelke, V., & Patil, C. (2015). Analyze the Effect of Variations in Shape of Tubes for Flat Plate Solar Water Heater. International Journal of Scientific Engineering and Research (IJSER), 3 (4): 118-124.
Sopian, K., Syahri, M., Abdullah, S., Othman, M. & Yatim, B. (2004). Performance of a non-metallic unglazed solar water heater with integrated storage system. Renewable Energy, 29 (9): 1421-1430.
Vasudeva Karanth, K., Manjunath, M. & Yagnesh Sharma, N. (2011). Numerical Simulation of a Solar Flat Plate Collector using Discrete Transfer Radiation Model (DTRM) – A CFD Approach. Proceedings of the World Congress on Engineering, 3.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2020 Enfoque UTE
Esta obra está bajo una licencia Creative Commons Reconocimiento 3.0 Unported.
Los artículos e investigaciones publicadas por la Universidad UTE, se realizan en régimen de Acceso Abierto [Open Access] en formato electrónico. Esto significa que todo el contenido está disponible de forma gratuita sin costo para el usuario o su institución. Los usuarios pueden leer, descargar, copiar, distribuir, imprimir, buscar o enlazar los textos completos de los artículos, o usarlos para cualquier otro propósito legal, sin necesidad de pedir permiso previo al editor o al autor. Esto está de acuerdo con la definición de acceso abierto de la Iniciativa de Acceso Abierto de Budapest (BOAI). Al enviar un artículo a cualquiera de las revistas científicas de la Universidad UTE, el o los autores aceptan estas condiciones.
La UTE aplica la licencia Creative Commons Attribution (CC-BY) a los artículos de sus revistas científicas. En virtud de esta licencia de acceso abierto, como autor usted acuerda que cualquier persona puede reutilizar su artículo en su totalidad o en parte para cualquier propósito, de forma gratuita, incluso para fines comerciales. Cualquiera puede copiar, distribuir o reutilizar el contenido siempre y cuando el autor y la fuente original estén correctamente citados. Esto facilita la libertad de reutilización y también asegura que el contenido pueda ser extraído sin barreras para necesidades de investigación.
Esta obra está bajo una Creative Commons Attribution 3.0 International (CC BY 3.0).
Además, la Revista Enfoque UTE garantiza y declara que los autores conservan siempre todos los derechos de autor y todos los derechos de publicación sin restricciones [© Los Autores]. El reconocimiento (BY) permite cualquier explotación de la obra, incluyendo una finalidad comercial, así como la creación de obras derivadas, la distribución de las cuales también está permitida sin ninguna restricción.