Oxidación avanzada como tratamiento alternativo para las aguas residuales. Una revisión

Autores/as

DOI:

https://doi.org/10.29019/enfoqueute.769

Palabras clave:

Aguas Residuales; Tratamiento alternativo; Procesos de Oxidación Avanzada.

Resumen

Cada año se vierten millones de metros cúbicos de aguas residuales a los cuerpos de agua, las cuales son tratadas de forma inadecuada, siendo estos procedimientos ineficientes para alcanzar lo requerido por la ley o para uso dentro de los procesos industriales. En estos casos, y debido a la escasez del hídrico, se está recurriendo al uso de los procesos de oxidación avanzada como tratamiento alternativo. Estos procesos se basan en procesos fisicoquímicos capaces de producir cambios profundos en la estructura química de los contaminantes, involucrando la generación y uso de especies transitorias de gran poder oxidante, principalmente el radical hidroxilo, el cual puede ser generado por medios fotoquímicos o por otras formas de energía y posee alta efectividad para la oxidación de materia orgánica. Esta revisión tiene como objetivo realizar un análisis de la influencia de los tratamientos en el proceso de descontaminación.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Adams C. D., y Kuzhikannil, J. J. (2000). Effects of H2 O2 / UV Preoxidation on the Aerobic Biodegradability of Quartenary Amine Surfactants. Water Research, 34: 668-672. https://doi.org/10.1016/S0043-1354(99)00186-4

Agustina, T. E.; Ang, H. M., y K.Vareek, V. (2005). A Review of Synergistic Effect of Phototocatalysis and Ozonation on Wastewater Treatment, Journal of Photochemistry and Photobiology C: Photochemistry Reviews. 6: 264-273. https://doi.org/10.1016/j.jphotochemrev.2005.12.003

Al-Shannag, M., et al. (2015). Heavy metal ions removal from metal plating wastewater using electrocoagulation: Kinetic study and process performance. Chemical Engineering Journal, 260: 749-756. https://n9.cl/xuaam

Arslan-Alaton I. (2003). A review of the effects of dye-assisting chemicals on advanced oxidation of reactive dyes in wastewater. Coloration Technology, 119: 345-353. https://doi.org/10.1111/j.1478-4408.2003.tb00196.x

Azbar, N.; Yonar, T., y Kestioglu, K. (2004). Comparison of Various Advanced Oxidation Processes and Chemical Treatment Methods for COD and Color Removal form a Polyester and Acetate Fiber Dyeing Effluent, Chemosphere. 55: 35-43. https://doi.org/10.1016/j.chemosphere.2003.10.046

Babuponnusami, A. y Muthukumar, K. (2014). A review on Fenton and improvements to the Fenton process for wastewater treatment. Journal of Environmental Chemical Engineering, 2(1): 557-572. https://doi.org/10.1016/j.jece.2013.10.011

Barbusinski, K. y Filipek, K. (2001). Use of Fenton’s reagent for removal of pesticides from industrial wastewater. Polish Journal of Environmental Studies, 10: 207-212. https://n9.cl/imi91

Caviedes-Rubio, D. I., et al. (2015). Tratamientos para la remoción de metales pesados comúnmente presentes en aguas residuales industriales. Una revisión. Revista Ingeniería y Región, 13(1): 73-90. https://doi.org/10.25054/22161325.710

Chamizo, H. (2003). Introducción a la interface salud ambiente. Curso especial de posgrado atención integral de salud. Costa Rica. CENDEISS. Recuperado de https://n9.cl/whw7b

Cifuentes, L., et al. (2011). Separación de especies de molibdeno por electrodiálisis. Chemical Engineering Communications, 198: 805-814. https://doi.org/10.1080/00986445.2011.534015

Deng, B.; Burris, D. R., y Campbell, T. J. (1999). Environmental Applications of Nanomaterials: Synthesis, Sorbents and Sensors. Imperial Collegue Press de https://n9.cl/szvkp

Domenech, X., et al. (2004). Procesos avanzados de oxidación para la eliminación de contaminantes. En M.A. Blesa y B. Sánchez (eds). Eliminación de contaminantes por fotocatálisis heterogénea. Colección Documentos Ciemat. https://n9.cl/rd1t6

Durán-Moreno, A., et al. (2011). Assessment of Fenton’s reagent and ozonation as pretreatments for increasing the biodegradability of aqueous diethanolamine solutions from an oil refinery gas sweetening process. Journal of Hazardous Materials, 186: 1652-1659. https://doi.org/10.1016/j.jhazmat.2010.12.043

Forero, J. E.; Ortiz, O. P., y Ríos, F. (2005). Aplicación de procesos de oxidación avanzada como tratamiento de fenol en aguas residuales industriales de refinería. Ciencia, Tecnología y Futuro, 3(1): 97-109. www.scielo.org.co/pdf/ctyf/v3n1/v3n1a08.pdf

Ghosh, P.; Samanta, A.N., y Ray, S. (2010). COD reduction of petrochemical industry wastewater using Fenton’s oxidation. The Canadian Journal of Chemical Engineering, 88(6): 1021-1026. https://doi.org/10.1002/cjce.20353

Gogate P.R., y Pandit A.B. (2004). A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions. Advances in Environmental Research, 8: 501-551 de http://repository.ias.ac.in/39608/1/49_pub.pdf

Guastalli, A., et al. (2004). Application of Electrodialysis on Recovering Phosphoric Acid From an Industrial Rinsewater, Trends in Electrochemistry and Corrosion the Beginning of the 21st Century. Edicions Universitat Barcelona. https://n9.cl/z8t91

Gutiérrez, E., et al. (2002). Efecto de la aplicación de ozono sobre la biodegradabilidad de aguas de formación. Multiciencias, (2)1: 50-54. https://www.redalyc.org/pdf/904/90420106.pdf

Heidmann, I., y Calmano, W. (2008). Removal of Cr (VI) from model wastewaters by electrocoagulation with Fe electrodes. Separation and Purification Technology, (61)1: 15-21. https://doi.org/10.1016/j.seppur.2007.09.011

Ibarra-Tazquez, H.N.; Dobrosz-Gómez, I., y Gómez, M. A. (2018). Optimización multiobjetivo del proceso Fenton en el tratamiento de aguas residuales provenientes de la producción de café soluble. Información Tecnológica, 29(5): 111-122. http://dx.doi.org/10.4067/S0718-07642018000500111

Ikehata K.; El-Din M.G., y Snyder S.A. (2008). Ozonation and advanced oxidation treatment of emerging organic pollutants in water and wastewater. Ozone: Science & Engineering, 30: 21-26. https://doi.org/10.1080/01919510701728970

Jack, F., et al. (2013). Electrocoagulation for the removal of copper from distillery waste streams. Institute of Brewing & Distilling. Wiley Online Library, 342: 60-64. https://n9.cl/0wily

Kallel, M., et al. (2009). Elleuch B., Removal of organic load and phenolic compounds from olive mill wastewater by Fenton oxidation with zero-valent iron. Chemical Engineering Journal, 150: 391-395. https://doi.org/10.1016/j.cej.2009.01.017

Cokay, E., y Kargi, F. (2007) E. C. Color, TOC and AOX removals from Pulp Mill Effluent by Advanced Oxidation Process: A comparative study. Journal of Hazardous Materials, 139: 244-253.https://doi.org/10.1016/j.jhazmat.2006.06.023

Kavitha, V., y Palanivelu, K. (2004). The role of ferrous ion in Fenton and photo-Fenton processes for the degradation of phenol. Chemosphere, 55(9): 1235-1243. https://doi.org/10.1016/j.chemosphere.2003.12.022

Khatri, P.K.; Jain, S.L., y Sain, B. (2011). Ultrasound-Promoted Oxidation of Sulfides with Hydrogen Peroxide under Catalyst-Free Conditions. Industrial & Engineering Chemistry Research, 50(2): 701-704. https://doi.org/10.1021/ie1013426

Khosa, M., et al, (2013). Efficiency of Aluminum and Iron Electrodes for the Removal of Heavy Metals [(Ni (II), Pb (II), Cd (II)] by Electrocoagulation Method. Journal of the Korean Chemical Society, 57(3): 316-321. https://doi.org/10.5012/jkcs.2013.57.3.316

Kreetachat, T., et al. (2007). Effects of Ozonation Process on Lignin-derived Compounds in Pulp and Paper Mill Effluents. Journal Efluentes of Hazardous Materials, 142: 250-257. https://doi.org/10.1016/j.jhazmat.2006.08.011

Legrini, O.; Oliveros, E. y Braun, A. M. (1993). Photochemical Processes for Water. Chemical Reviews, 93: 671-698 de https://doi.org/10.1021/cr00018a003

Li, C.; Gao, N., y Li, W. (2011). Photochemical degradation of typical herbicides simazine by UV/H2O2 in aqueous solution. Desalination and Water Treatment, 36(1-3): 197-202. https://doi.org/10.5004/dwt.2011.2410

López-Ramírez, M. A., et al. (2019). Treatment of Leachates of a Controlled Landfill in Veracruz by Using the Fenton Method. Nature Environment and Pollution Technology, 18(1): 1-8 de https://n9.cl/kfp2r

Lopez-Lopez, A.; Pic, J. S., y Debellefontaine, H. (2007). Ozonation of Azo Dye in a Semi-batch reactor: A Determination of the Molecular and Radical Contributions. Chemosphere, 66: 2120-2126. https://doi.org/10.1016/j.chemosphere.2006.09.025

Mahamuni, N.N., y Adewuyi, Y.G. (2010). Advanced oxidation processes (AOPs) involving ultrasound for waste water treatment: A review with emphasis on cost estimation. Ultrasonics Sonochemistry, 17: 990-1003. https://doi.org/10.1016/j.ultsonch.2009.09.005

Mahmoud, A., y Hoadley, A. (2012). An evaluation of a hybrid ion exchange electrodialysis process in the recovery of heavy metals from simulated dilute industrial wastewater. Water Research, 46: 3364-3376. https://doi.org/10.1016/j.watres.2012.03.039

Meas, Y., et al. (2010). Industrial wastewaters treated by electrocoagulation. Electrochimica Acta, (55)27: 8165-8171. https://doi.org/10.1016/j.electacta.2010.05.018

Mercado, I. D.; González, G., y Valencia, S. G. (2013). Remoción de níquel y DQO presentes en las aguas residuales de la industria automotriz mediante electrocoagulación. Escuela de Ingeniería de Antioquia, 10(9): 13-21. https://n9.cl/ohc7r

Morante, G. (2002). Electrocoagulación de aguas residuales. Revista Colombiana de Física, 34(2): 484-487

Mounteer, A.; Mokfienski, J., y Amorim, F. (2005). Remoção de Matéria Orgânica Recalcitrante de Efluentes de Celulose Kraft de Branqueamento por Ozonólise. O Papel, 66: 64-70. https://n9.cl/w3pv

Perez, M., et al. (2002). Removal of organic contaminants in paper pulp treatment effluents under Fenton and photo-Fenton conditions. Applied Catalysis B: Environmental, 36: 63-74. https://n9.cl/jnv65

Ollis, D., y Al-Ekabi, H. (1983). Photocatalytic Purification and Treatment of Water and Air. Amsterdam: Elsevier https://n9.cl/6efxu

Ovhal, S.D.; Sheetal, D., y Thakur, P. (2010). Kinetics of photocatalytic degradation of methylene blue in a TiO2 slurry reactor. Research Journal Of Chemistry And Environment, 14(4): 9-13. https://n9.cl/env5f

Pignatello, J.J.; Oliveros, E., y MacKay, A. (2006). Advanced Oxidation Processes for Organic Contaminant Destruction Based on the Fenton Reaction and Related Chemistry. Critical Reviews in Environmental Science and Technology, 36(1): 1-84. https://doi.org/10.1080/10643380500326564

Pokhrel, D., y Viraraghavan, T. (2004). Treatment of Pulp and Paper Mill Wastewater-A Review. Science of the Total Environment, 333: 37-58. https://doi.org/10.1016/j.scitotenv.2004.05.017

Poyatos J. M., et al. (2010). Advanced oxidation processes for wastewater treatment: state of the art’. Water, Air and Soil Pollution, 205: 187-204. https://n9.cl/olf2w

Rodriguez, T.; Botelho, D., y Cleto, E. (2008). Tratamiento de efluentes industriales de naturaleza recalcitrante usando ozono, peróxido de hidrógeno y radiación ultravioleta. Revista Facultad de Ingeniería Universidad de Antioquia, 46: 24-38. https://n9.cl/ysxv7

Saatci, Y. (2010). Decolorization and Mineralization of Remazol Red F3B by Fenton and Photo-Fenton Processes. Journal of Environmental Engineering, 136(9): 1000-1005. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000226

Sadyrbaeva, T. (2014). Recovery of Cobalt(II) by the Hybrid Liquid Membrane- Electrodialysis-Electrolysis Process. Electrochimica Acta, 133: 161-168. https://doi.org/10.1016/j.electacta.2014.04.025

Salas G. (2010). Tratamiento por oxidación avanzada (reacción Fenton) de aguas residuales de la industria textil. Revista Peruana de Química e Ingeniería Química, 13 (1): 30-38. https://n9.cl/u0nra

San Sebastian, N., et al. (2003). Pre-oxidation of an extremely polluted industrial wastewater by the Fenton’s reagent. Journal of Hazardous Materials, 101: 315.322. https://doi.org/10.1016/S0304-3894(03)00207-3

Sanz, J.; Lombraña, J. I., y De Luis, A. (2013). Estado del arte en la oxidación avanzada a efluentes industriales: nuevos desarrollos y futuras tendencias. Afinidad LXX, 561: 25-33. https://n9.cl/3hrea

Sarria, V. M., et al. (2005). Nuevos sistemas electroquímicos y fotoquímicos para el tratamiento de aguas residuales y de bebida. Revista Colombiana de Química, 34(2): 161-173. https://n9.cl/y16v

Sharma, V. K., et al. (1999). Ferrate(VI) Oxidation of Thiourea. Environmental Science & Technology, 33: 2645-2650. https://doi.org/10.1021/es981083a

Taylor, J., y Wiesner, M. (2002). Membranas. Capítulo 11. En AWWA. Calidad y Tratamiento del Agua. Manual de suministros de Agua Comunitaria. McGraw Hill. https://n9.cl/g922q

Teixeira, C. P. (2002). Estudio comparativo de tipos diferentes de procesos oxidativos avanzados (tesis de doctorado). Universidad Estatal de Campinas, Brasil. https://n9.cl/ykcg9

USEPA, United States Environmental Protection Agency. (1998). Handbook of Advanced Photochemical Oxidation Processes. Washington DC de https://n9.cl/xb7r3

Degrémont. (1991). Water Treatment Handbook. Editorial Lavoisier Publishing.

Zhao, D.; Cheng, J., y Hoffmann, M.R. (2011). Kinetics of microwave-enhanced oxidation of phenol by hydrogen peroxide, Front. Environmental Science and Engineering, 5(1): 57-64. https://doi.org/10.1007/s11783-010-0251-9

Publicado

2021-10-01

Cómo citar

López Ramírez, M. A., Castellanos Onorio, O. P., Lango Reynoso, F., Castañeda Chávez, M. del R., Montoya Mendoza, J., Sosa Villalobos, C. A., & Ortiz Muñiz, B. (2021). Oxidación avanzada como tratamiento alternativo para las aguas residuales. Una revisión. Enfoque UTE, 12(4), pp. 76 – 87. https://doi.org/10.29019/enfoqueute.769

Número

Sección

Misceláneos