Reconocimiento del habla con acento español basado en un modelo acústico
DOI:
https://doi.org/10.29019/enfoqueute.839Palabras clave:
RAV, Modelo de Lenguaje, CMUSphinxResumen
El objetivo del artículo fue generar un modelo reconocimiento automático de voz (RAV) basado en la traducción de la voz humana a texto, siendo considerado una de las ramas de la inteligencia artificial. El análisis de voz permite identificar información sobre la acústica, fonética, sintáctica, semántica de las palabras, entre otros elementos que pueden identificar ambigüedad en términos, errores de pronunciación, sintáctica similar pero semántica diferente, que representan características propias del lenguaje humano. El modelo se centró en el análisis acústico de las palabras, proponiendo la generación de una metodología para reconocimiento acústico a partir de transcripciones del habla de audios que contienen voz humana y se usó la tasa de error por palabra para identificar la precisión del modelo. Los audios son llamadas de emergencia registrados por el Servicio Integrado de Seguridad ECU911. El modelo fue entrenado con la herramienta CMUSphinx para idioma español sin conexión a internet. Los resultados mostraron que la tasa de error por palabra varía en relación a la cantidad de audios; es decir a mayor cantidad de audios menor cantidad de palabras erróneas y mayor exactitud del modelo. La investigación concluyó haciendo énfasis en la duración de cada audio como variable que afecta la precisión del modelo.
Descargas
Citas
Aguiar de Lima, T., y Da Costa-Abreu, M. (2020). A Survey on Automatic Speech Recognition Systems for Portuguese Language and its Variations. Computer Speech and Language, 62. https://doi.org/10.1016/j.csl.2019.101055
Alharbi, S., Alrazgan, M., Alrashed, A., Alnomasi, T., Almojel, R., Alharbi, R., Alharbi, S., Alturki, S., Alshehri, F., y Almojil, M. (2021). Automatic Speech Recognition: Systematic Literature Review. IEEE Accedido 9: 131858–131876. https://doi.org/10.1109/ACCESS.2021.3112535
Ali, A., y Renals, S. (2018). Word error rate estimation for speech recognition: E-wer. ACL 2018 - 56th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference (Long Papers), 2(2014), 20–24. https://doi.org/10.18653/v1/p18-2004
Ankit, A., Mishra, S. K., Shaikh, R., Gupta, C. K., Mathur, P., Pawar, S., y Cherukuri, A. (2016). Acoustic Speech Recognition for Marathi Language Using Sphinx. ICTACT Journal on Communication Technology, 7(3), 1361–1365. https://doi.org/10.21917/ijct.2016.0201
Celis, J., Llanos, R., Medina, B., Sepúlveda, S., y Castro, S. (2017). Acoustic and Language Modeling for Speech Recognition of a Spanish Dialect from the Cucuta Colombian Region. Ingeniería, 22(3): 362–376. https://doi.org/10.14483/23448393.11616
Belinkov, Y., y Glass, J. (2019). Analysis Methods in Neural Language Processing: A Survey. Transactions of the Association for Computational Linguistics, 7, 49-72.
Dhankar, A. (2017). Study of deep learning and CMU sphinx in automatic speech recognition. In 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI) (2296-2301). IEEE.
Singh, R., Raj, B., y Stern, R. M. (2018). Model Compensation and Matched Condition Methods for Robust Speech Recognition. En Noise Reduction in Speech Applications (pp. 245-275). CRC press.
Errattahi, R., El Hannani, A., y Ouahmane, H. (2018). Automatic Speech Recognition Errors Detection and Correction: A review. Procedia Computer Science,128: 32-37.
Peinl, R., Rizk, B., y Szabad, R. (2020). Open-source Speech Recognition on Edge Devices. En 2020 10th International Conference on Advanced Computer Information Technologies (ACIT) (pp. 441-445). IEEE.
Kim, D., Oh, J., Im, H., Yoon, M., Park, J., y Lee, J. (2021). Automatic Classification of the Korean Triage Acuity Scale in Simulated Emergency Rooms Using Speech Recognition and Natural Language Processing: A Proof of Concept Study. Journal of Korean Medical Science, 36(27): 1-13. https://doi.org/10.3346/JKMS.2021.36.E175
Lakdawala, B., Khan, F., Khan, A., Tomar, Y., Gupta, R., & Shaikh, A. (2018). Voice to Text transcription using CMU Sphinx A mobile application for healthcare organization. Proceedings of the International Conference on Inventive Communication and Computational Technologies, ICICCT 2018, Icicct, 749–753. https://doi.org/10.1109/ICICCT.2018.8473305
Medina, F., Piña, N., Mercado, I., y Rusu, C. (2014). Reconocimiento de palabras en español con Julius. ACM International Conference Proceeding Series, 2241. https://doi.org/10.1145/2590651.2590660
Peralta Vásconez, J. J., Narváez Ortiz, C. A., Orellana Cordero, M. P., Patiño León, P. A., y Cedillo Orellana, P. (2021). Evaluación del reconocimiento de voz entre los servicios de Google y Amazon aplicado al Sistema Integrado de Seguridad ECU 911. Revista Tecnológica - ESPOL, 33(2): 147-158. https://doi.org/10.37815/rte.v33n2.840
Tavi, L., Alumäe, T., y Werner, S. (2019). Recognition of Creaky Voice from Emergency calls. Proceedings of the Annual Conference of the International Speech Communication Association. INTERSPEECH, 2019-Septe: 1990-1994. https://doi.org/10.21437/Interspeech.2019-1253
Zhao, L., Alhoshan, W., Ferrari, A., Letsholo, K. J., Ajagbe, M. A., Chioasca, E.-V., y Batista-Navarro, R. T. (2020). Natural Language Processing (NLP) for Requirements Engineering: A Systematic Mapping Study. Computing Surveys 54(3): 1-41.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Los Autores
Esta obra está bajo una licencia Creative Commons Reconocimiento 3.0 Unported.
Los artículos e investigaciones publicadas por la Universidad UTE, se realizan en régimen de Acceso Abierto [Open Access] en formato electrónico. Esto significa que todo el contenido está disponible de forma gratuita sin costo para el usuario o su institución. Los usuarios pueden leer, descargar, copiar, distribuir, imprimir, buscar o enlazar los textos completos de los artículos, o usarlos para cualquier otro propósito legal, sin necesidad de pedir permiso previo al editor o al autor. Esto está de acuerdo con la definición de acceso abierto de la Iniciativa de Acceso Abierto de Budapest (BOAI). Al enviar un artículo a cualquiera de las revistas científicas de la Universidad UTE, el o los autores aceptan estas condiciones.
La UTE aplica la licencia Creative Commons Attribution (CC-BY) a los artículos de sus revistas científicas. En virtud de esta licencia de acceso abierto, como autor usted acuerda que cualquier persona puede reutilizar su artículo en su totalidad o en parte para cualquier propósito, de forma gratuita, incluso para fines comerciales. Cualquiera puede copiar, distribuir o reutilizar el contenido siempre y cuando el autor y la fuente original estén correctamente citados. Esto facilita la libertad de reutilización y también asegura que el contenido pueda ser extraído sin barreras para necesidades de investigación.
Esta obra está bajo una Creative Commons Attribution 3.0 International (CC BY 3.0).
Además, la Revista Enfoque UTE garantiza y declara que los autores conservan siempre todos los derechos de autor y todos los derechos de publicación sin restricciones [© Los Autores]. El reconocimiento (BY) permite cualquier explotación de la obra, incluyendo una finalidad comercial, así como la creación de obras derivadas, la distribución de las cuales también está permitida sin ninguna restricción.