Modelación hidrológica de la cuenca urbana del río Bélico en la ciudad de Santa Clara, Cuba
DOI:
https://doi.org/10.29019/enfoqueute.888Palabras clave:
escirrentía, lluvia, inundaciones urbanas, modelación hidrológica, número de curvaResumen
Las inundaciones urbanas son un fenómeno asociado a grandes precipitaciones en relativamente cortos períodos de tiempo, las causas que las provocan son disímiles y generalmente vienen acompañadas por una deficiente planificación urbana. La ciudad de Santa Clara, Cuba, presenta graves problemas de inundaciones cercanos a los ríos Bélico y Cubanicay debido a la disminución de la sección de sus cauces por indisciplinas urbanísticas. La presente contribución obtiene los valores del caudal máximo de escurrimiento para varias secciones de control ubicadas a lo largo de dichos ríos, usando para ello el modelo TR-55 (Technical Report 55) del Servicio de Conservación de los Recursos Naturales de Estados Unidos. Se realizan tres modelaciones asociadas a lluvias convectivas Tipo I, II, III, agrupadas a los picos de las tormentas y su ubicación temporal, con lo cual se pueden definir los gastos máximos relacionados con tormentas de configuración diferentes para una probabilidad del 1%, 2% y 10%. Los resultados obtenidos demuestran que la situación más crítica ocurre para la lluvia Tipo III y el valor máximo de escurrimiento para una probabilidad del 1% en el punto de cierre de la cuenca es de 170 m3/s.
Descargas
Citas
Ballinas-González, H. A., Alcocer-Yamanaka, V. H., Canto-Rios, J. J. y Simuta-Champo, R. (2020). Sensitivity Analysis of the Rainfall-Runoff Modeling Parameters in Data-Scarce Urban Catchment. Hydrology, 7(4). https://doi.org/10.3390/hydrology7040073/
Beven, K. J. (2020). A history of the concept of time of concentration. Hydrol. Earth Syst. Sci., 24(5), 2655-2670. https://doi.org/10.5194/hess-24-2655-2020/
Boyd, O., Grounds, R. M., & Bennett, E. D. (1993). A randomized clinical trial of the effect of deliberate perioperative increase of oxygen delivery on mortality in high-risk surgical patients. Jama, 270(22), 2699-2707.
Campos, J. N. B., Studart, T. M., Souza Filho, F. D. y Porto, V. C. (2020). On the Rainfall Intensity-Duration-Frequency Curves, Partial-Area Effect and the Rational Method: Theory and the Engineering Practice. Water, 12(10). https://doi.org/10.3390/w12102730/
Castillo, C., Abreu Franco, D. E. y Álvarez González, M. (2021). Evaluación de distintas fórmulas empíricas para el cálculo del tiempo de concentración en la cuenca urbana del río Bélico y Cubanicay, ciudad de Santa Clara. Enfoque UTE, 12, 51-64. https://doi.org/10.29019/enfoqueute.729/
Castillo, C., Domínguez, I. y Martínez, Y. (2022). Modelos paramétricos de distribución temporal de precipitaciones en la estación meteorológica Yabú de la provincia Villa Clara, Cuba. Tecnologías y Ciencias del Agua. Preprint. doi: https://doi.org/10.24850/j-tyca-14-4-4/
Castillo, C., Domínguez, I., Martínez, Y. y Abreu, D. (2022). Curvas de Intensidad-Duración-Frecuencia para la ciudad de Santa Clara, Cuba. Tecnologías y Ciencias del Agua. Preprint. doi: https://doi.org/ 10.24850/j-tyca-15-1-9/
Chin David, A. (2019). Estimating Peak Runoff Rates Using the Rational Method. Journal of Irrigation and Drainage Engineering, 145(6), 04019006. https://doi.org/10.1061/(ASCE)IR.1943-4774.0001387/
Chow, Y. S., Moriguti, S., Robbins, H., & Samuels, S. M. (1964). Optimal selection based on relative rank (the “secretary problem”). Israel Journal of mathematics, 2(2), 81-90.
Dhakal, N., Fang, X., Thompson, D. B., & Cleveland, T. G. (2014, July). Modified rational unit hydrograph method and applications. In Proceedings of the Institution of Civil Engineers-Water Management (Vol. 167, No. 7, pp. 381-393). Thomas Telford Ltd.
Deb, P., y Kiem, A. S. (2020). Evaluation of rainfall–runoff model performance under non-stationary hydroclimatic conditions. Hydrological Sciences Journal, 65(10), 1667-1684. https://doi.org/10.1080/02626667.2020.1754420/
Deb, P., Kiem, A. S. y Willgoose, G. (2019). A linked surface water-groundwater modelling approach to more realistically simulate rainfall-runoff non-stationarity in semi-arid regions. Journal of Hydrology, 575, 273-291. https://doi.org/https://doi.org/10.1016/j.jhydrol.2019.05.039/
Fraga, I., Cea, L. y Puertas, J. (2019). Effect of rainfall uncertainty on the performance of physically based rainfall–runoff models. Hydrological Processes, 33(1), 160-173.
https://doi.org/https://doi.org/10.1002/hyp.13319/
García, A., & Lenin, Y. (2022). Diseño hidráulico de obras de protección del margen derecho del río Coca; barrio Con Hogar ciudad del Coca (Bachelor's thesis, Quito: UCE).
Haan, C. T., Barfield, B. J., & Hayes, J. C. (1994). Design hydrology and sedimentology for small catchments. Elsevier.
Hasan, H. H., Mohd Razali, S. F., Ahmad Zaki, A. Z. y Mohamad Hamzah, F. (2019). Integrated Hydrological-Hydraulic Model for Flood Simulation in Tropical Urban Catchment. Sustainability, 11(23). https://doi.org/10.3390/su11236700/
Hettiarachchi, S., Wasko, C. y Sharma, A. (2019). Can antecedent moisture conditions modulate the increase in flood risk due to climate change in urban catchments? Journal of Hydrology, 571, 11-20. https://doi.org/10.1016/j.jhydrol.2019.01.039/
Hollis, G. E. (1975), The effect of urbanization on floods of different recurrence interval, Water Resour. Res., 11( 3), 431– 435, https://doi.org/10.1029/WR011i003p00431.
Hu, C., Wu, Q., Li, H., Jian, S., Li, N. y Lou, Z. (2018). Deep Learning with a Long Short-Term Memory Networks Approach for Rainfall-Runoff Simulation. Water, 10(11). https://doi.org/10.3390/w10111543/
Hu, C., Xia, J., She, D., Song, Z., Zhang, Y. y Hong, S. (2021). A new urban hydrological model considering various land covers for flood simulation. Journal of Hydrology, 603, 126833. https://doi.org/10.1016/j.jhydrol.2021.126833/
Joshi, N., Bista, A., Pokhrel, I., Kalra, A., y Ahmad, S. Rainfall-Runoff Simulation in Cache River Basin, Illinois, Using HEC-HMS. World Environmental and Water Resources Congress 2019, 348-360. https://doi.org/doi:10.1061/9780784482339.035/
K. N, V. (2021). “Runoff assessment by Storm water management model (SWMM)- A new approach”. Journal of Applied and Natural Science, 13(SI), 142-148. https://doi.org/10.31018/jans.v13iSI.2813/
Kader, M. Y. A., Bad, R. y Saley, B. (2020). Study of the 1D Saint-Venant Equations and Application to the Simulation of a Flood Problem. Journal of Applied Mathematics and Physics, 8(7), 14. https://doi.org/10.4236/jamp.2020.87090/
Karpathy Nicholas, S., y Chin David, A. (2019). Relationship between Curve Number and ϕ-Index. Journal of Irrigation and Drainage Engineering, 145(11), 06019009. https://doi.org/10.1061/(ASCE)IR.1943-4774.0001426/
Lee, J. G., & Heaney, J. P. (2003). Estimation of urban imperviousness and its impacts on storm water systems. Journal of Water Resources Planning and Management, 129(5), 419-426.
Leopold, L. B. (1968). Hydrology for urban land planning: A guidebook on the hydrologic effects of urban land use (Vol. 554). US Geolgoical Survey.
Lian, H., Yen, H., Huang, J.-C., Feng, Q., Qin, L., Bashir, M. A., Wu, S., Zhu, A. X., Luo, J., Di, H., Lei, Q. y Liu, H. (2020). CN-China: Revised runoff curve number by using rainfall-runoff events data in China. Water Research, 177, 115767. https://doi.org/https://doi.org/10.1016/j.watres.2020.115767/
Maidment, D. R. (1993). GIS and hydrologic modeling. Environmental modeling with GIS., 147-167.
Miller, A. J., Welty, C., Duncan, J. M., Baeck, M. L. y Smith, J. A. (2021). Assessing urban rainfall-runoff response to stormwater management extent. Hydrological Processes, 35(7). https://doi.org/https://doi.org/10.1002/hyp.14287/
Mishra, S.K., Singh, V.P. y Singh, P.K. (2018). Revisiting the Soil Conservation Service Curve Number Method. En Singh, V., Yadav, S., Yadava, R. (eds) Hydrologic Modeling. Water Science and Technology Library, 81. Springer, https://doi.org/10.1007/978-981-10-5801-1_46/
Moglen, G. E., McCuen, R. H., y Moglen, R. L. (2018). Consequences of Changes to the NRCS Rainfall-Runoff Relations on Hydrologic Design. Journal of Hydrologic Engineering, 23(8), 04018032. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001681/
Musy, A., & Higy, C. (2004). Hydrologie: Une science de la nature (Vol. 21). PPUR presses polytechniques.
Nardi, F., Annis, A., y Biscarini, C. (2018). On the impact of urbanization on flood hydrology of small ungauged basins: the case study of the Tiber river tributary network within the city of Rome. Journal of Flood Risk Management, 11(S2), S594-S603. https://doi.org/https://doi.org/10.1111/jfr3.12186/
Ormsbee, L., Hoagland, S. y Peterson, K. (2020). Limitations of TR-55 Curve Numbers for Urban Development Applications: Critical Review and Potential Strategies for Moving Forward. Journal of Hydrologic Engineering, 25(4), 02520001. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001885/
Poudel, U., Ahmad, S. y Stephen, H. (2020). Impact of Urbanization on Runoff and Infiltration in Walnut Gulch Experimental Watershed. Watershed Management 2020, 219-232. https://doi.org/doi:10.1061/9780784483060.020/
Richards, L. A., & Weaver, L. R. (1944). MOISTURE RETENTION BY SOME IRRIGATED SOILS AS. Journal of Agricultural Research, 69, 215.
Roohi, M., Soleymani, K., Salimi, M. y Heidari, M. (2020). Numerical evaluation of the general flow hydraulics and estimation of the river plain by solving the Saint–Venant equation. Modeling Earth Systems and Environment, 6(2), 645-658. https://doi.org/10.1007/s40808-020-00718-9
Ross, C. W., Prihodko, L., Anchang, J., Kumar, S., Ji, W. y Hanan, N. P. (2018). HYSOGs250m, global gridded hydrologic soil groups for curve-number-based runoff modeling. Scientific Data, 5(1), 180091. https://doi.org/10.1038/sdata.2018.91/
Schoener, G. (2018). Urban Runoff in the U.S. Southwest: Importance of Impervious Surfaces for Small-Storm Hydrology. Journal of Hydrologic Engineering, 23(2), 05017033. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001610/
Stella, J. M., y Anagnostou, E. N. (2018). Modeling the flood response for a sub-tropical urban basin in south Florida. Tecnología y ciencias del agua, 9, 128-141. https://doi.org/10.24850/j-tyca-2018-03-05/
Valle Junior, L. C. G. D., Rodrigues, D. B. B. y Oliveira, P. T. S. D. (2019). Initial abstraction ratio and Curve Number estimation using rainfall and runoff data from a tropical watershed. RBRH, 24(0). https://doi.org/10.1590/2318-0331.241920170199/
Viessman, W., & Lewis, G. L. (1995). Introduction to Hydrology . Reading, MA: Addision.
Walega, A., Amatya, D. M., Caldwell, P., Marion, D. y Panda, S. (2020). Assessment of storm direct runoff and peak flow rates using improved SCS-CN models for selected forested watersheds in the Southeastern United States. Journal of Hydrology: Regional Studies, 27, 100645. https://doi.org/https://doi.org/10.1016/j.ejrh.2019.100645/
Wang, S., y Wang, H. (2018). Extending the Rational Method for assessing and developing sustainable urban drainage systems. Water Research, 144, 112-125. https://doi.org/https://doi.org/10.1016/j.watres.2018.07.022/
Wheater, H., Sorooshian, S., & Sharma, K. D. (Eds.). (2007). Hydrological modelling in arid and semi-arid areas. Cambridge University Press.
Wu, S.-J., Yeh, K.-C., Ho, C.-H. y Yang, S.-H. (2016). Modeling probabilistic lag time equation in a watershed based on uncertainties in rainfall, hydraulic and geographical factors. Hydrology Research, 47(6), 1116-1141. https://doi.org/10.2166/nh.2016.134/
Yao, L., Wei, W., Yu, Y., Xiao, J. y Chen, L. (2018). Rainfall-runoff risk characteristics of urban function zones in Beijing using the SCS-CN model. Journal of Geographical Sciences, 28(5), 656-668. https://doi.org/10.1007/s11442-018-1497-6/
Yogi, F., Correa, C. J. P., Arruda, E. M. y Tonello, K. C. (2021). Sensitivity analysis of rainfall–runoff parameters models to estimate flows. Applied Water Science, 11(2), 25. https://doi.org/10.1007/s13201-020-01348-3/
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2023 Los Autores
Esta obra está bajo una licencia Creative Commons Reconocimiento 3.0 Unported.
Los artículos e investigaciones publicadas por la Universidad UTE, se realizan en régimen de Acceso Abierto [Open Access] en formato electrónico. Esto significa que todo el contenido está disponible de forma gratuita sin costo para el usuario o su institución. Los usuarios pueden leer, descargar, copiar, distribuir, imprimir, buscar o enlazar los textos completos de los artículos, o usarlos para cualquier otro propósito legal, sin necesidad de pedir permiso previo al editor o al autor. Esto está de acuerdo con la definición de acceso abierto de la Iniciativa de Acceso Abierto de Budapest (BOAI). Al enviar un artículo a cualquiera de las revistas científicas de la Universidad UTE, el o los autores aceptan estas condiciones.
La UTE aplica la licencia Creative Commons Attribution (CC-BY) a los artículos de sus revistas científicas. En virtud de esta licencia de acceso abierto, como autor usted acuerda que cualquier persona puede reutilizar su artículo en su totalidad o en parte para cualquier propósito, de forma gratuita, incluso para fines comerciales. Cualquiera puede copiar, distribuir o reutilizar el contenido siempre y cuando el autor y la fuente original estén correctamente citados. Esto facilita la libertad de reutilización y también asegura que el contenido pueda ser extraído sin barreras para necesidades de investigación.
Esta obra está bajo una Creative Commons Attribution 3.0 International (CC BY 3.0).
Además, la Revista Enfoque UTE garantiza y declara que los autores conservan siempre todos los derechos de autor y todos los derechos de publicación sin restricciones [© Los Autores]. El reconocimiento (BY) permite cualquier explotación de la obra, incluyendo una finalidad comercial, así como la creación de obras derivadas, la distribución de las cuales también está permitida sin ninguna restricción.