Review of the state of the art of batteries in automotive applications

  • Eduardo José Cueva Sánchez Universidad Tecnológica Equinoccial
  • Juan Lucero Universidad Tecnológica Equinoccial
  • Alex Guzman Universidad Tecnológica Equinoccial
  • Juan Rocha Universidad Internacional SEK
  • Luis Espinoza Universidad Técnica Estatal de Quevedo

Abstract

Purpose of this paper is the review of the literature and analyze the progress and application that battery technologies have made in the automotive industry, due to the implementation of electrified systems in the power train, that are used in hybrid and electric vehicles. The technologies which are used, were classified by the materials applied in the construction of the electrochemical cells, lead acid, lithium ion and nickel metal hydride were the chosen ones. It was identified the most important characteristics as the capacity, the nominal voltage of their cells, among others. Lead-acid batteries will continue to occupy a considerable market share because of their cost, but they cannot be used as propulsion batteries. Nickel-metal hydride batteries withstand higher work stress and have higher energy density, so they are mainly used in hybrid vehicles. Because of the demand for energy and power, that electric vehicles need, is used the lithium-ion technology.

Downloads

Download data is not yet available.

References

B. C. International. (2017). About Batteries > What is a lead battery? Recuperado 17 de octubre de 2017, a partir de http://aboutbatteries.batterycouncil.org/What-is-a-lead-battery
Bañeres Sorinas, M. (2003). Estudio de alternativas en el reciclaje de baterías de plomo fuera de uso. Recuperado a partir de http://upcommons.upc.edu/handle/2099.1/3095
Bernard, P., Bertrand, F., & Simonneau, O. (1999). Paste type nickel electrode containing a cobalt compound and at least one other element. Google Patents. Recuperado a partir de http://www.google.sr/patents/US5993995
Bernard, P., Goubault, L., & Guiader, O. (2008). Positive electrode for an electrochemical generator with an alkaline electrolyte. Google Patents.
Bertran, J. M. (2017). Métodos de estimación del estado de carga de baterías electroquímicas. Barcelona, España.
C. N. d. M. A. (CONAMA) and D. G. f. T. Z. G. GmbH. (s. f.). Guía Técnica sobre el manejo de baterías de plomo ácido usadas. Proyecto CONAMA / GTZ , 85. Recuperado a partir de http://www.sinia.cl/1292/articles-47018_recurso_1.pdf
Chang, S., Young, K.-H., & Lien, Y.-L. (2017). Reviews of European Patents on Nickel/Metal Hydride Batteries. Batteries, 3(3), 25.
Council, W. E. (2007). Transport Technologies and policy Scenarios to 2050. World Energy Council (World Ener). London, United Kingdom.
Cowie, I. (2017). All About Batteries, Part 3: Lead-Acid Batteries | EE Times. 2014. Recuperado a partir de
https://www.eetimes.com/author.asp?section_id=36&doc_id=1320644
Diouf, B., & Pode, R. (2015). Potential of lithium-ion batteries in renewable energy. Renewable Energy. https://doi.org/10.1016/j.renene.2014.11.058
Endemaño Ventura, L. (2016). Análisis global de los sistemas de almacenamiento de energía eléctrica. Recuperado a partir de https://idus.us.es/xmlui/handle/11441/48651
EUROBAT, ILA, ACEA, JAMA, & KAMA. (s. f.). A Review of Battery Technologies for Automotive Applications. Recuperado a partir de https://eurobat.org/sites/default/files/rev_of_battery_executive_web_1.pdf
Han, X., Ouyang, M., Lu, L., Li, J., Zheng, Y., & Li, Z. (2014). A comparative study of commercial lithium ion battery cycle life in electrical vehicle: Aging mechanism identification. Journal of Power Sources, 251, 38-54.
Kalhammer, F. R., Kopf, B. M., Swan, D. H., Roan, V. P., & Walsh, M. P. (2007). Status and Prospects for Zero Emissions Vehicle Technology Report of the ARB Independent Expert Panel 2007. Sacramento. Recuperado a partir de https://www.arb.ca.gov/msprog/zevprog/zevreview/zev_panel_report.pdf
Kim, T. H., Park, J. S., Chang, S. K., Choi, S., Ryu, J. H., & Song, H. K. (2012). The current move of lithium ion batteries towards the next phase. Advanced Energy Materials. https://doi.org/10.1002/aenm.201200028
Lu, L., Han, X., Li, J., Hua, J., & Ouyang, M. (2013). A review on the key issues for lithium-ion battery management in electric vehicles. Journal of Power Sources, 226, 272-288. https://doi.org/10.1016/j.jpowsour.2012.10.060
M. Olmo, R. N. (2009). Lead-Acid Baterias. Recuperado 17 de octubre de 2017, a partir de http://hyperphysics.phy-astr.gsu.edu/hbasees/electric/leadacid.html
Mahmoudzadeh Andwari, A., Pesiridis, A., Rajoo, S., Ricardo, M.-B., & Esfahanian, V. (2017). A review of Battery Electric Vehicle technology and readiness levels. Renewable and Sustainable Energy Reviews, 78, 414-430.
Mastragostino, M., & Soavi, F. (2007). Strategies for high-performance supercapacitors for HEV. Journal of Power Sources, 174, 89-93. https://doi.org/10.1016/j.jpowsour.2007.06.009
Oliver, C., Vicente, L., Canals Casals, L., & Amante García, B. (2017). Informe de modelos de reutilización de baterías.
Ouchi, T., Young, K.-H., & Moghe, D. (2016). Reviews on the Japanese patent applications regarding nickel/metal hydride batteries. Batteries, 2(3), 21.
Peña Ordóñez, C. (2011, mayo). Estudio de baterías para vehículos eléctricos. Universidad Carlos III de Madrid. Recuperado a partir de https://e-archivo.uc3m.es/handle/10016/11805#preview
R. B. GmbH. (s. f.). Manual de baterías Bosch. (Robert Bosch GmbH, Ed.).
S. Bardo. (2017). Anexos. Recuperado a partir de http://upcommons.upc.edu/bitstream /handle/2099.1/9360/Anexos_Sebastin_Bardo.pdf;jsessionid=24442231A2DB2018BC2E9B1F67492137?sequence=2
Shwartz, M. (2013). Stanford scientists calculate the carbon footprint of grid-scale battery technologies. Standford.
Thackeray, M. M., Wolverton, C., Isaacs, E. D., Liu, J., Lu, W., Qin, Y., Amine, K. (2012). Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries. Energy & Environmental Science, 5(7), 7854. https://doi.org/10.1039/c2ee21892e
Trapanese, M., Franzitta, V., & Viola, A. (2012). Description of hysteresis of Nickel Metal Hydride Battery. En IECON 2012-38th Annual Conference on IEEE Industrial Electronics Society (pp. 967-970). IEEE.
Valdovinos, F., & Otárola, R. (2008). Almacenamiento de energía: Desarrollos tecnológicos y costos. Trabajo de investigación de la Escuela de Ingeniería de la Universidad Católica de Chile.
Westgeest, A. (2016). Battery Technology for Vehicle Applications. Eurobat. Recuperado a partir de https://circabc.europa.eu/webdav/CircaBC/GROW/automotive/Library/GEAR 2030/Working Group 1 – Adaptation of the EU value chain/Project Team 2 - Zero-emission vehicles/2016-06-13-2nd meeting of PT 2/GEAR 2030 - battery tech for emobility_EUROBAT_13June2016.
Williamson, S. S. (2013). Energy Management Strategies for Electric and Plug-in Hybrid Electric Vehicles. New York, NY: Springer New York. https://doi.org/10.1007/978-1-4614-7711-2
Young, K.-H., Cai, X., & Chang, S. (2017). Reviews on Chinese Patents Regarding the Nickel/Metal Hydride Battery. Batteries, 3(3), 24.
Young, K., Ng, K. Y., & Bendersky, L. A. (2016). A technical report of the robust affordable next generation energy storage system-BASF program. Batteries, 2(1), 2.
Zarpelon, L. M. C. (2016). Estudo das características eletroquímicas e microestruturais de eletrodos de hidreto metálico à base de LaNi com adições de elementos de liga. Universidade de São Paulo.
Published
2018-03-30
How to Cite
Cueva Sánchez, E., Lucero, J., Guzman, A., Rocha, J., & Espinoza, L. (2018). Review of the state of the art of batteries in automotive applications. Enfoque UTE, 9(1), pp. 166 - 176. https://doi.org/https://doi.org/10.29019/enfoqueute.v9n1.202
Section
Automation and Control, Mechatronics, Electromechanics, Automotive