Use of an orthogonal arrangement for the analysis of the process of die sink electrical discharge machining with shape electrodes of graphite and copper on aluminum micro-casting)

  • Cristian Fabian Pérez Universidad Técnica de Ambato
  • Edwin Moya Universidad Técnica de Ambato
  • Diana Coello Universidad Técnica de Ambato
Keywords: orthogonal arrangement, electroerosion;, electrode;, roughness;, tooling wear

Abstract

This paper deals with the use of the Taguchi method in the realization of experiments to solve the multiple answers in the process of EDM machining using copper and graphite electrodes. This manufacturing process was carried out on the aluminum microfusion material widely used in the footwear manufacturing industry. The experimentation was carried out according to an orthogonal arrangement L8. Analysis of variance (ANOVA) was used to determine the effects of the input variables (tooling material, pulse time, tool shape and cutting depth) on the output variables (material removal rate and surface roughness); as well as a regression analysis to predict the results of the experimental analysis. The results have shown that machining parameters can be optimized with considerations of multiple responses effectively. It is evident that the pulse time is the main influencer in the material removal rate (MRR) and the machining time has a greater influence on the surface roughness (Ra). Finally, it was demonstrated that the copper electrode has better working efficiency and the graphite gives better surface roughness.

Downloads

Download data is not yet available.

Author Biographies

Edwin Moya, Universidad Técnica de Ambato

Ayudante laboratorista de la Facultad de Ingeniería Civil Y Mecánica, en el Area de manufactura

Diana Coello, Universidad Técnica de Ambato

Dotora en Física, profesora investigadora de la Universidad Técnica de Ambato Facultad de Ingeniería Civíl y Mecánica. Trabaja como docente en las materias de física y diseño de experimentos de la FICM

References

Amorim, F. L., Weingaertner, W. L., & Bassani, I. A. (2010). Aspects on the optimization of die-sinking EDM of tungsten carbide-cobalt. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 32(SPE), 496-502.
Banker, K., Prajapati, U., Prajapati, J., & Modi, P. (2014). Parameter optimization of electro discharge machine of AISI 304 steel by using taguchi method. International Journal of Application or Innovation in Engineering & Management, 3(8), 20-24.
Kunieda, M., Lauwers, B., Rajurkar, K., & Schumacher, B. (2005). Advancing EDM through fundamental insight into the process. CIRP Annals-Manufacturing Technology, 54(2), 64-87.
Lee, L., Lim, L., Narayanan, V., & Venkatesh, V. (1988). Quantification of surface damage of tool steels after EDM. International Journal of Machine Tools and Manufacture, 28(4), 359-372.
Lin, C., Lin, J., & Ko, T. (2002). Optimisation of the EDM process based on the orthogonal array with fuzzy logic and grey relational analysis method. The International Journal of Advanced Manufacturing Technology, 19(4), 271-277.
Marafona, J., & Wykes, C. (2000). A new method of optimising material removal rate using EDM with copper–tungsten electrodes. International Journal of Machine Tools and Manufacture, 40(2), 153-164.
Pandey, P., & Jilani, S. (1987). Electrical machining characteristics of cemented carbides. Wear, 116(1), 77-88.
Roy, T., & Dutta, R. (2014). Study of the Effect of EDM Parameters based on Tool Overcut using Stainless Steel (SS 304 Grade). Int. J. Eng. Trends Technol.(IJETT), 13(5), 196-199.
Sanghani, C., & Acharya, G. (2014). A review of research on improvement and optimization of performance measures for electrical discharge machining. Journal of Engineering Research and Applications, 4(1), 433-450.
Santamaría Zambrano, C. J. (2017). Análisis de parámetros de mecanizado en el proceso de electroerosión por penetración en microfundición de aluminio con electrodos de cobre y grafito y su relación con la rugosidad superficial resultante. Universidad Técnica de Ambato. Facultad de Ingeniería Civil y Mecánica. Carrera de Ingeniería Mecánica.
Shrivastava, S. M., & Sarathe, A. (2014). Influence of process parameters and electrode shape configuration on material removal rate, surface roughness and electrode wear in die sinking EDM: a review. International Journal of Emerging Technology and Advanced Engineering, 4(4), 138-145.
Singh, B., Kasdekar, D. K., & Parashar, V. (2015). Application of GRA for Optimal Machining Parameter Selection in EDM. International Journal of Hybrid Information Technology, 8(10), 371-382.
Sohani, M., Gaitonde, V., Siddeswarappa, B., & Deshpande, A. (2009). Investigations into the effect of tool shapes with size factor consideration in sink electrical discharge machining (EDM) process. The International Journal of Advanced Manufacturing Technology, 45(11-12), 1131.
Su, J., Kao, J., & Tarng, Y. (2004). Optimisation of the electrical discharge machining process using a GA-based neural network. The International Journal of Advanced Manufacturing Technology, 24(1-2), 81-90.
Wu, J., Zhou, M., Xu, X., Yang, J., Zeng, X., & Xu, D. (2016). Fast and stable electrical discharge machining (EDM). Mechanical Systems and Signal Processing, 72, 420-431.
Yahya, A., & Manning, C. (2004). Determination of material removal rate of an electro-discharge machine using dimensional analysis. Journal of Physics D: Applied Physics, 37(10), 1467.
Published
2018-09-28
How to Cite
Pérez, C., Moya, E., & Coello, D. (2018). Use of an orthogonal arrangement for the analysis of the process of die sink electrical discharge machining with shape electrodes of graphite and copper on aluminum micro-casting). Enfoque UTE, 9(3), pp. 67 - 79. https://doi.org/https://doi.org/10.29019/enfoqueute.v9n3.315
Section
Automation and Control, Mechatronics, Electromechanics, Automotive