Event-Triggered Control for a Three DoF Manipulator Robot

  • Saul Enrique Benitez-Garcia Instituto Politécnico Nacional
  • Miguel Gabriel Villarreal-Cervantes Instituto Politécnico Nacional
Keywords: Control disparado por eventos, Robot manipulador, Función de Control de Lyapunov, Función de evento


In the classical approach of Time-Triggered Control (TTC),  the control signal is updated  at  each  sampling  time  as  well  as  the  system  states  to  be  controlled,  which could imply a redundancy in the computational calculation as well as in the transfer of information in the regulation objective. On the other hand, the Event-Triggered Control (ETC) approach performs the same task in an asynchronous way, i.e,, it only updates the control signal when a performance requirement is violated and the states are updated at each sampling time. This reduces the amount of computational calculation without affecting the performance of the closed loop system. For this reason, in the present work the ETC is developed for the stabilization of a manipulator robot with three Degree of Freedom (DoF) in the joint space where a Lyapunov Control Function (LCF) is proposed to formulate the event function (e¯), which indicates whether or not  is required  the  control  signal  updating.  Simulation results show the reduction of the updates compared with a TTC.


Download data is not yet available.


Canudas de Wit, C., Siciliano, B., & Bastin, G. (1996). Theory of Robot Control. London, England.
Chen, Y., Wang, K., Zhai, L., & Gao, J. (2017). Non-linear model predictive control schemes with application on a 2 link vertical robot manipulator. Robotics and Computer-Integrated Manufacturing, 3237–3266.
Durand, S., and Guerrero-Castellanos, J. F., Marchand, N., & Guerrero-Sánchez, W. F. (2013). Event-Based Control of the Inverted Pendulum: Swing up and Stabilization. International Journal of Control, Automation and Systems, 1-10.
Halalchi, H., Bara, G. L., & Laroche, E. (2010). {LPV} Controller Design for Robot Manipulators Based on Augmented {LMI} Conditions with Structural Constraints. 4th IFAC Symposium on System, Structure and Control, 289–295.
Kelly, R., Santibáñez, V., & Loría, A. (2005). Control of Robot Manipulators in Joint Space. London, England: Springer-Verlag.
Marchand, N., Durand, S., & Guerrero Castellanos, J. F. (2013). A General Formula for Event-Based Stabilization of Nonlinear Systems. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1332-1337.
Monaco, S., & Normand-Cyrot, D. (2007). Advanced Tools for Nonlinear Sampled-Data Systems’ Analysis and Control. European Journal of Control, 221-241.
Tripathy, N. S., Kar, I. N., & Paul, K. (2014). An Event-triggered Based Robust Control of Robot Manipulator. 13th International Conference on Control, Automation, Robotics and Vision, 425-430.
Tso, S. K., & Lin, L. N. (1996). Neural-Network-Based Adaptive Controller for Uncertainty Compensation of Robot Manipulators. 13th Triennial World Congress, 5001–5006.
Villarreal-Cervantes, M. G., Guerrero-Castellanos, J. F., Ramírez-Martínez, S., & Sánchez-Santana, J. P. (2015). Stabilization of a (3,0) mobile robot by means of an event-triggered control. ISA Transactions, 605-613.
Wilson, J., Charest, M., & Dubay, R. (2016). Non-linear model predictive control schemes with application on a 2 link vertical robot manipulator. Robotics and Computer-Integrated Manufacturing, 23-30.
Zhao, Y., Sheng, Y., & Liu, X. (2014). A Novel Finite Time Sliding Mode Control for Robotic Manipulators. 19th World Congress The International Federation of Automatic Control, 7336–7341.
How to Cite
Benitez-Garcia, S. E., & Villarreal-Cervantes, M. G. (2018). Event-Triggered Control for a Three DoF Manipulator Robot. Enfoque UTE, 9(4), pp. 33 - 44. https://doi.org/10.29019/enfoqueute.v9n4.396
Automation and Control, Mechatronics, Electromechanics, Automotive