Simulation of an active indirect hybrid dehydrator using ANSYS software




Dehydration, solar, hybrid, CFD, simulation


This research simulated the behavior of an active indirect hybrid dehydrator with the atmospheric conditions of the city of Riobamba because there is a need to dehydrate fruits and vegetables that in times of overproduction do not reach the market. Develops a methodology that allows a good approximation of the solution. It starts with the design of the dehydrator prototype and then undergoes a meshing process, once a good quality mesh is obtained, the physical models that are going to be used in the simulation are selected, then the physical properties and conditions are entered. of contour that corresponds to the climatic conditions of the city of Riobamba, for its later simulation; After simulating the prototype, it is verified that the curve of physical variables to be calculated has stabilized and the residual curves are below the set value. If it complies with these two steps, it can be determined that the simulation is correct. For the validation of the results obtained in the simulation, data from a similar investigation are used. It is necessary to carry out the simulation to be able to determine if the designed dehydrator can work in the optimal range of temperatures for dehydration.



Download data is not yet available.


Almada, M., Stella; M., Machaín-Singer; M., Pulfer, J. C. (2005). Guía de uso de secaderos solares para frutas, legumbres, hortalizas, plantas medicinales y carnes. Unesco.

Boughali, S.; Benmoussa, H.; Bouchekima, B.; Mennouche, D. (2009). Crop drying by indirect active hybrid solar – Electrical dryer in the eastern Algerian Septentrional Sahara. Solar Energy, 83(12): 2223–2232.

Carrillo, A.; Gordillo, J.: Domínguez, F.; Cejudo, J. (2018). Simulation of a solar assisted counterflow tunnel dehydrator. Llevado a cabo en International Conference on Advances in Solar Thermal Food Processing.

Dhanushkodi, S.; Wilson, V. H.; Sudhakar, K. (2017). Mathematical modeling of drying behavior of cashew in a solar biomass hybrid dryer. Resource-Efficient Technologies, 3: 359-364.

El Hage, H.; Herez, A.; Ramadan, M.; Bazzi, H.; Khaled, M. (2018). An investigation on solar drying: A review with economic and environmental assessment. Energy, 157: 815-829.

Fito, P.; Andrés, A.; Barat, J.; & Albors, A. (2001). Introducción al secado de alimentos por aire caliente. Universitat Politècnica de València.

Guevara, A.; Salas, J. (2017). Diseño y construcción de un deshidratador solar para fresa. Jovenes en a Ciencia, 03(1): 114-119.

Ibarz, A.; Barbosa-Cánovas, G. (2000). Operaciones unitarias en la ingeniería de alimentos: Mundi-Prensa.

Kabeel, A. E., Abdelgaied, M. (2016). Performance of novel solar dryer. Process Safety and Environmental Protection, 102: 183–189.

Llumiquinga, P.; Suquillo, B. (2015). Diseño y construcción de un prototipo de deshidratador de frutas de capacidad de 12 Kg con circulación de ire forzado utilizando resistencias eléctricas. Universidad Politécnica Salesiana Sede Quito.

López, E., Méndez, L.; Rodríguez, J. (2013). Efficiency of a hybrid solar-gas dryer. Solar Energy, 93: 23–31.

Maiti, S.; Patel, P.; Vyas, K.; Eswaran, K.; Ghosh, P. K. (2011). Performance evaluation of a small scale indirect solar dryer with static reflectors during non-summer months in the Saurashtra region of western India. Solar Energy, 85(11): 2686–2696.

Martínez, J.; Vidal, R.; Grado, J.; & Gándara, J. (2013). Deshidratación de alimentos utilizando energía solar térmica. Cultura Científica y Tecnológica, 50: 99–107.

Mendoza, J.; Insuasti, R.; Barrera, O.; & Navarro, M. (2020). Design and simulation of an Indirect Mixed: 107-124.

Misha, S.; Abdullah, A. L.; Tamaldin, N.; Rosli, M. A. M.; Sachit, F. A. (2020). Simulation CFD and experimental investigation of PVT water system under natural Malaysian weather conditions. Energy Reports, 6: 28-44.

Pandal Blanco, A. (2019). Modelado euleriano de flujo bifasico para el calculo CFD de chorros diesel: Editorial Reverte.

Potter, M. C.; Wiggert, D. C.; Ramadan, B. H. (2015). Mecánica de Fluidos . CENGAGE Learning.

Simbaña, R. (2016). Análisis y simulación del proceso de deshidratado de frutas utilizando un prototipo deshidrtador con energía solar. Universidad Politécnica Salesiana Sede Quito.

Tegenaw, P. D.; Gebrehiwot, M. G.; & Vanierschot, M. (2019). On the comparison between computational fluid dynamics (CFD) and lumped capacitance modeling for the simulation of transient heat transfer in solar dryers. Solar Energy, 184: 417-425.

Tiupul, P., & Arévalo, M. (2019). Anuario climatológico año 2019. Escuela Superior Politécnica de Chimborazo.

Varun, Sunil, Sharma, A.; Sharma, N. (2012). Construction and Performance Analysis of an Indirect Solar Dryer Integrated with Solar Air Heater. Procedia Engineering, 38: 3260-3269.

Versteeg, H.; Malalasekera, W. (2007). An Introduction to Computational Fluid Dynamics: Pearson Prentice Hall.

Yumbillo, B. (2020). Diseño de un prototipo de un secador solar para frutilla (Fragaria vesca) utilizando modelos matemáticos. Escuela Superior Politécnica de Chimborazo.



How to Cite

Cabrera Escobar, J. O., Jurado, F., & Vera, D. (2021). Simulation of an active indirect hybrid dehydrator using ANSYS software. Enfoque UTE, 12(4), pp. 29 - 44.