Numerical simulation of fluid-structure interaction to predict the response of bladeless wind turbines to wind-induced vibrations in compact cities




wind turbine without blades, induced vibration, harmonic response, resonance, sustainable


This article presents an analysis of the Fluid-Structure response of bladeless wind turbines that work by induced aeroelastic resonance, which can be used in cities or small towns to form part of sustainable urban planning. In it, numerical simulations of the behavior of the wind and the effect called Von Karman Vortices that it produces when surrounding the structure of the wind turbine are carried out, taking as input data the wind speeds measured by the Mariscal Sucre Meteorological Station in Quito. CFD simulations determine the excitation signal caused by the different existing wind flows, the effects that these oscillations cause on the structure are simulated through a modal study and harmonic response to resonance. The results obtained show a proportional increase in the frequency and amplitude of the vortex shedding to the increase in wind speed, causing different excitation signals that cause the wind turbine to oscillate with amplitudes between 6 and 11 cm. Finally, the transient simulations show that the presence of houses and buildings in the vicinity where the wind turbine is installed causes the direction of the vortex street to vary, as well as alterations in the frequency and amplitude of the excitation.



Download data is not yet available.


Andrade, A. (2021, julio 27). Objetivos de Desarrollo Sostenible en Ecuador. Investoria Fundation.

Ansys, I. C. (2020). Formulation of harmonic analysis: Introduction, complex variables and notation, displacement-velocity-acceleration, formulation and derivation, discussion. ANSYS.

Buela, A., Rey, R., Unisa, F., Meris, P., Manuel, M., De la Cruz, J., & Tud, R. (2021, junio 26). Design and nonlinear static simulation of a small-scale vortex bladeless wind power generator. 2021 IEEE International Conference on Automatic Control & Intelligent Systems, Shah Alam, Malasia 185–190.

Bustamante Campoverde, A. S. (2021). Caracterización del viento y temperatura aparente en los cañones urbanos del centro histórico de Cuenca, Ecuador. Conservar Património, 36, 90–105.

Comisión de Sustentabilidad Capbauno. (2020). Ciudades sostenibles. Capbauno Obtenido de

Domínguez Martinez, M., Toral, F., Ghasem, H., Papadopoulou, P. S., & Papaphilippou, Y. (2018). Longitudinally variable field dipole design using permanent magnets for clic damping rings. IEEE Transactions on Applied Superconductivity, 28(3), 1–4.

Guevara Díaz, J. (2013). Cuantificación del perfil del viento hasta 100 m de altura desde la superficie y su incidencia en la climatología eólica. Terra, 29(46), 81–101.

Hu, J., Wang, Z., Zhao, W., Sun, S., Sun, C., & Guo, C. (2020). Numerical simulation on vortex shedding from a hydrofoil in steady flow. Journal of Marine Science and Engineering, 8(3), 195.

Hu, Y., Yang, B., Chen, X., Wang, X., & Liu, J. (2018). Modeling and experimental study of a piezoelectric energy harvester from vortex shedding-induced vibration. Energy Conversion and Management, 162, 145–158.

Karaağaçlı, T., & Özgüven, N. (2021). Experimental modal analysis of nonlinear systems by using response-controlled stepped-sine testing. Mechanical Systems and Signal Processing, 146.

López, O. D. (2002). Modelamiento computacional de la calle de vértices de karma por dinámica de verticidad. Mecánica Computacional, XXI, 274–292.

Meteored. (2021). Histórico del tiempo en Quito. Quito - Aeropuerto Mariscal Sucre Intl (SEQU): Meteored.

Peter, S., & Leine, R. (2017). Excitation power quantities in phase resonance testing of nonlinear systems with phase-locked-loop excitation. Mechanical Systems Signal Processign, 96, 139–158.

Saengsaen, S., Chantharasenawong, C., & Wu, T.-L. (2019). A 2–d mathematical model of vortex induced vibration driven bladeless wind turbine. MATEC Web of Conferences, 291, artículo 02007.

Spalart, P. R., & Allmaras, S. R. (1992). A one-equation turbulence model for aerodynamic flows. La Recherche Aérospatiale, 1, 5–21.

Yáñez, D. J. (2018, enero 23). España Patente nº BR112013002403A.

Yáñez, D. J. (2018, junio 7). Aerogeneradores resonantes por VIV. Vortex Bladeless S. L.



How to Cite

Andrade-Terán, C. (2022). Numerical simulation of fluid-structure interaction to predict the response of bladeless wind turbines to wind-induced vibrations in compact cities. Enfoque UTE, 13(2), pp. 1 - 16.