Typical meteorological year based on the precipitation of Nanegalito and Pacto-Ecuador

Authors

  • Francisco Rodríguez Universidad UTE
  • Andrea Castro Universidad UTE
  • Freddy Marín Universidad UTE
  • Gloria Roldán Universidad UTE
  • Fausto Viteri Moya Universidad UTE

DOI:

https://doi.org/10.29019/enfoqueute.v10n1.422

Keywords:

Typical meteorological year, Finkelstein-Schafer statistical equation, cumulative distribution function, precipitation, Nanegalito

Abstract

The typical meteorological year (TMY) based on daily rainfall data was calculated in the parish of Nanegalito; 12 years were considered, from 2004 to 2015, including both years. For the establishment of the TMY, the Finkelstein-Schafer (FS) statistical equation was chosen, together with the calculation of the cumulative distribution function for each month of each year considered. The weighted sum, calculated from the FS values, was used to finally choose the months that best represent the climatic characteristics of the period analyzed by applying the root mean square deviation (RMSD). Once these values were obtained, the TMY of Nanegalito was estimated based on the precipitation. The determination of Nanegalito TMY may be useful for the management of several processes, in this and other surrounding parishes, as an example, Pacto, such as irrigation planning in crops, analysis in drought risk scenarios, and if other variables are analyzed in the future, they could serve as tools for the study of possible renewable energies.

Metrics

Downloads

Download data is not yet available.

References

Banco Central del Ecuador. (2017). Reporte de Coyuntura del Sector Agropecuario. Ecuador. Retrieved from https://contenido.bce.fin.ec/documentos/PublicacionesNotas/Catalogo/Encuestas/Coyuntura/Integradas/etc201604.pdf
Bre, F., & Fachinotti, V. D. (2016). Generation of typical meteorological years for the Argentine Littoral Region. Energy and Buildings, 129, 432–444. https://doi.org/10.1016/j.enbuild.2016.08.006
Domínguez, A., Martínez-Romero, A., Leite, K. N., Tarjuelo, J. M., de Juan, J. A., & López-Urrea, R. (2013). Combination of typical meteorological year with regulated deficit irrigation to improve the profitability of garlic growing in central spain. Agricultural Water Management, 130, 154–167. https://doi.org/10.1016/j.agwat.2013.08.024
Hall, I. J., Praire, R. R., Anderson, H. E., & Boes, E. C. (1978). Generation of typical meteorological years for 26 Solmet Stations. Albuquerque. Retrieved from http://geomodelsolar.eu/data/typical-meteorological-year
Iriondo, M. (1994). The Quaternary of Ecuador. Quaternary International, 21, 101–112. https://doi.org/10.1016/1040-6182(94)90024-8
Janjai, S., & Deeyai, P. (2009). Comparison of methods for generating typical meteorological year using meteorological data from a tropical environment. Applied Energy, 86(4), 528–537. https://doi.org/10.1016/j.apenergy.2008.08.008
Jiang, Y. (2010). Generation of typical meteorological year for different climates of China. Energy, 35, 1946–1953. https://doi.org/10.1016/j.energy.2010.01.009
Leite, K. N., Martínez-Romero, A., Tarjuelo, J. M., & Domínguez, A. (2015). Distribution of limited irrigation water based on optimized regulated deficit irrigation and typical metheorological year concepts. Agricultural Water Management, 148, 164–176. https://doi.org/10.1016/j.agwat.2014.10.002
Lerum, V. (2008). High-Performance Building.
Marion, W., & Urban, K. (1995). Users manual for TMY2s. Retrieved from https://www.osti.gov/servlets/purl/87130
Murphy, S. (2017). The construction of a modified Typical Meteorological Year for photovoltaic modeling in India. Renewable Energy, 111, 447–454. https://doi.org/10.1016/j.renene.2017.04.033
Ohunakin, O. S., Adaramola, M. S., Oyewola, O. M., & Fagbenle, R. O. (2013). Generation of a typical meteorological year for north-east, Nigeria. Applied Energy, 112, 152–159. https://doi.org/10.1016/j.apenergy.2013.05.072
Oko, C. O. C., & Ogoloma, O. B. (2011). Generation of a typical meteorological year for port harcourt zone. Journal of Engineering Science and Technology, 6(2), 204–214.
Pissimanis, D., Karras, G., Notaridou, V., & Gavra, K. (1988). The generation of a “typical meteorological year” for the city of Athens. Solar Energy, 40(5), 405–411. https://doi.org/10.1016/0038-092X(88)90095-3
Pourrut, P. (1983). Los climas del Ecuador: fundamentos explicativos. Centro Ecuatoriano de Investigaciones Geográficas. Quito. Retrieved from http://horizon.documentation.ird.fr/exl-doc/pleins_textes/divers11-10/21848.pdf
Pusat, S., Ekmekçi, I., & Akkoyunlu, M. T. (2015). Generation of typical meteorological year for different climates of Turkey. Renewable Energy, 75, 144–151. https://doi.org/10.1016/j.renene.2014.09.039
Sistema Nacional de Información. (2017). Plan de desarrollo y ordenamiento territorial parroquia Nanegalito 2015-2019. Retrieved from http://app.sni.gob.ec/sni-link/sni/PORTAL_SNI/data_sigad_plus/sigadplusdiagnostico/1768122810001_PDOT DIAGNOSTICO NONO 2015-2019_30-10-2015_23-30-15.pdf

Published

2019-03-29

How to Cite

Rodríguez, F., Castro, A., Marín, F., Roldán, G., & Viteri Moya, F. (2019). Typical meteorological year based on the precipitation of Nanegalito and Pacto-Ecuador. Enfoque UTE, 10(1), pp. 197 - 204. https://doi.org/10.29019/enfoqueute.v10n1.422

Issue

Section

Environment