Chemical composition of the foliage meal of Tithonia diversifolia

Authors

DOI:

https://doi.org/10.29019/enfoqueute.856

Keywords:

Foliage meal; basic bromatology; amino acids; secondary metabolites

Abstract

With the objective of determining the nutritional constituents, amino acids and the content of secondary metabolites of the foliage meal of Tithonia diversifolia. For this, plant material was collected 70 days after regrowth. The percentages of DM, CP, P, Ca, Si, CF, NDF, ADF, ADL, Cel, Hcel, CC were determined; amino acid profile (methionine, cystine, methionine + cystine, lysine, threonine, aspartic acid, glutamic acid, proline, glycine, alanine, valine, isoleucine, leucine, serine, phenylalanine, arginine, histidine), and content of TT, TP, TCT, TBCT, FCT, Flv, Sap, Alk, Trit and TS. For statistical processing, descriptive techniques (mean and standard deviation) were used. The plant material of Tithonia diversifolia analyzed showed percentages of 22.23, 2.62, 0.013, 45.7, and 29.8% and 6.09 MJ/kg (CP, Ca, P, NDF, ADF and ME). For the secondary metabolites, they presented concentrations of 5.35, 12.38, 13.7, 9.58, 4.15, 24.49, 0.86, 1.36, 7.71 and 10.75 g/kg MS for total tannins, total phenols, total condensed tannins, total bound condensed tannins, free condensed tannins, flavonoids, alkaloids, saponins, triterpenes and total steroids). The highest concentrations of amino acids were for lysine, aspartic acid, glutamic acid, proline, glycine, alanine, valine, leucine, serine and phenylalanine with values ​​of 13-30 g/kg of protein. It is concluded that the foliage meal of Tithonia diversifolia presents an adequate relation in its quality.

Metrics

Downloads

Download data is not yet available.

References

AOAC. (2005). Official methods of analysis of AOAC International (18.a ed). AOAC International. https://t.ly/3NZDV

Basyuni, M., & Wati, R. (2017). Bioinformatics analysis of the oxidosqualene cyclase gene and the amino acid sequence in mangrove plants. Journal of Physics: Conference Series, 801, artículo 012011. https://doi.org/10.1088/1742-6596/801/1/012011.

Betancourt, J. A., Nuñez, L. A., & Castaño, G. A. (2017). Supply of Tithonia diversifolia silage alone or mixed with cassava bran in broilers diet. Tropical and Subtropical Agroecosystems, 20(2), 203–213. https://bit.ly/3ReDNNu

Boham, B. A., & Kocipai-Abyazan, R. (1994). Flavonoids and condensed tannins from leaves of Hawaiian Vaccinium vaticulatum and V. calycynium. Pacific Science, 48(4), 458–463. http://hdl.handle.net/10125/2298

Cabanilla-Campos, M. G., Meza-Bone, C. J., Avellaneda-Cevallos, J. H., Meza-Castro, M. T., Vivas-Arturo, W., & Meza-Bone, G. A. (2021). Desempeño agronómico y valor nutricional en Tithonia diversifolia (Hemsl.) A Gray bajo un sistema de corte. Revista Ciencia y Tecnología, 14(1), 71–78. https://doi.org/10.18779/cyt.v14i1.450

Cabrera-Nuñez, A., Lammoglia-Villagomez, M., Alarcon-Pulido, S., Martinez-Sanchez, C., Rojas-Ronquillo, R., & Velazquez-Jimenez, S. (2019). Árboles y arbustos forrajeros utilizados para la alimentación de ganado bovino en el norte de Veracruz, México. Abanico Veterinario, 9(enero-diciembre), 1–12. http://dx.doi.org/10.21929/abavet2019.913

Cardona-Iglesias, J. L., Mahecha-Ledesma, L., & Angulo-Arizala, J. (2017). Efecto sobre la fermentación in vitro de mezclas de Tithonia diversifolia, Cenchrus clandestinum y grasas poliinsaturadas. Agronomía Mesoamericana, 28(2), 405–426. https://bit.ly/3ajRmL3

E.F.B.S.E.W.G (European Federation of Branches & Subcommittee Energy of the Working Group). (1989). European table of energy values for Poultry feedstuffs (3.a ed. Beekbergen: WPSA, 1989).Spelderholt. Institute for Poultry Research and Information Services. Beekbergen, Netherlands. 15 pp.

Feng, X., Xu, S., Li, J., Yang, Y., Chen, Q., Lyu, H., Zhong, C., He, Z., & Shi, S. (2020). Molecular adaptation to salinity fluctuation in tropical intertidal environments of a mangrove tree Sonneratia alba. BMC Plant Biology, 20, artículo 178. https://doi.org/10.1186/s12870-020-02395-3

Fuente-Martínez, B., Carranco-Jauregui, M., Barrita-Ramirez, V., Ávila-Gonzalez, E., & Sangines-Garcia, L. (2019). Efecto de la harina de Tithonia diversifolia sobre las variables productivas en gallinas ponedoras. Abanico Veterinario, 9(enero-diciembre), 1–12. http://dx.doi.org/10.21929/abavet2019.911

Galindo, W., Rosales, M., Murgueitio, E., & Larrahondo, J. (1989). Sustancias antinutricionales en las hojas de guamo, nacedero y matarratón. Livestock Research for Rural Development, 1(1), 36–47. http://www.lrrd.org/lrrd1/1/mauricio.htm

Gallego-Castro, L. A., Mahecha-Ledesma, L., & Angulo-Arizala, J. (2017). Calidad nutricional de Tithonia diversifolia Hemsl. A Gray bajo tres sistemas de siembra en el trópico alto. Agronomía Mesoamericana, 28(1), 213–222. http://doi.org/10.15517/am.v28i1.21671

Goering, M.K., & Van Soest, P.J. (1970). Forage Fiber Analysis (apparatus, reagents, procedures and some applications). Agricultural Handbook No. 379, USDA, Washington DC. https://naldc.nal.usda.gov/download/CAT87209099/pdf

Herrera, R. S., Verdecia, D. M., Ramirez, J. L., Garcia, M., & Cruz, A. M. (2017). Relation between some climatic factors and the chemical composition of Tithonia diversifolia. Revista Cubana de Ciencia Agrícola, 51(2), 271–279. https://www.redalyc.org/articulo.oa?id=193057228013

Jie-Ping, F., & Chao-Hong, H. (2006). Simultaneous quantification of three major bioactive triterpene acids in the leaves of Diospyros kaki by high-perfomance liquid chromatography method. Journal of Pharmaceutical and Biomedical Analysis, 41(3), 950–956. https://doi.org/10.1016/j.jpba.2006.01.044

Lezcano-Mas, Y., Soca-Perez, M., Roque-Lopez, E., Ojeda-Garcia, F., Machado-Castro, R., & Fontes-Marrero, D. (2016). Forraje de Tithonia diversifolia para el control de estrongílidos gastrointestinales en bovinos jóvenes. Pastos y Forrajes, 39(2), 133–138. https://bit.ly/3PdETr7

Londoño, C. J., Mahecha, L. L., & Angulo, A. J. (2019). Desempeño agronómico y valor nutritivo de Tithonia diversifolia (Hemsl.) A Gray para la alimentación de bovinos. RECA: Revista Colombiana de Ciencia Animal, 11(1), 1–13. https://doi.org/10.24188/recia.v0.n0.2019.693.

Makkar, H. P. S. (2003). Effects and fate of tannins in ruminant animals, adaptation to tannins, and strategies to overcome detrimental effects of feeding tannin-rich feeds. Small Ruminant Research, 49(3), 241–256. http://dx.doi.org/10.1016/S0921-4488(03)00142-1

Marrugo-Ligardo, Y. A., Montero-Castillo, P. M., & Duran-Lengua, M. (2016). Evaluación nutricional de concentrados proteicos de Phaseolus lunatus y Vigna unguiculata. Información Tecnológica, 27(6), 107–114. http://dx.doi.org/10.4067/S0718-07642016000600011

Martinez, R., Castelan, O. A., Gonzalez, M., & Estrada, J. G. (2011). Nutritive value, in vitro fermentation and secondary metabolites of weeds and maize straw used for feeding dairy cattle. Tropical and Subtropical Agroecosystems, 14(2), 525–536. http://www.scielo.org.mx/pdf/tsa/v14n2/v14n2a14.pdf

Martinez, Y., Tobar, L. A., Lagos, H. M., Parrado, C. A., Urquia, A. M., & Valdivie, M. (2021). Phytobiotic effect of Anacardium occidentale L. leaves powder on performance, carcass traits, and intestinal characteristics in broilers. Brazilian Journal of Poultry Science, 23(1). https://doi.org/10.1590/1806-9061-2020-1362

Mejía-Diaz, E., Mahecha-Ledesma, L., & Angulo-Arizala, J. (2017). Tithonia diversifolia: Especie para ramoneo en sistemas silvopastoriles y métodos para estimar su consumo. Agronomía Mesoamerica, 28(1), 289–302. https://doi.org/10.15517/am.v28i1.22673

Milian-Dominguez, J. C., Iglesias-Monroy, O., & Valdes-Hernandez, H. (2017). Caracterización fitoquímica de Samanea Saman. Jacq Merr (algarrobo). Revista Cubana de Ciencias Forestales, 5(1), 49–61. http://cfores.upr.edu.cu/index.php/cfores/article/view/158/html

Miquilena, E., & Higuera-Moros, A. (2012). Evaluación del contenido de proteína, minerales y perfil de aminoácidos en harinas de Cajanus cajan, Vigna unguiculata y Vigna radiata para su uso en la alimentación humana. Revista Científica UDO Agrícola, 12(3), 730–740. https://bit.ly/3PaUpUs

Moriones-Ruiz, M. L., & Montes-Rojas, C. (2017). Aporte de Tithonia diversifolia en abonos orgánicos: Efecto en producción y suelo en Cauca, Colombia. Biotecnología en el Sector Agropecuario y Agroindustrial, 15(2), 101–111. https://doi.org/10.18684/BSAA(15)101-111

Muzquiz, M., Cuadrado, C., Ayet, G., De la Cuadra, C., Burbano, C., & Osagie, A. (1994). Variation of alkaloid components of lupin seeds in 49 genotypes of Lupinus albus from different countries and location. Journal of Agricultural Food Chemistry, 42(7), 1447–1450. https://doi.org/10.1021/jf00043a011

Navas, A., & Montaña, V. (2019). Comportamiento de Tithonia diversifolia bajo condiciones de bosque húmedo tropical. Revista de Investigaciones Veterinarias del Perú, 30(2), 721–732. http://www.scielo.org.pe/pdf/rivep/v30n2/a21v30n2.pdf

Nawab, A., Tang, S., Gao, W., Li, G., Xiao, M., An, L., Wu, L. & Liu, W. (2020). Tannin supplementation in animal feeding; mitigation strategies to overcome the toxic effects of tannins on animal health: A review. Journal of Agricultural Science,12(4), 217. https://bit.ly/3uu9ybs

Obadoni, B. O., & Ochuko, P. O. (2002). Phytochemical studies and comparative efficacy of the crude extract of some haemostatic plants in Edo and Delta States of Nigeria. Global Journal of Pure Applied Science, 8(2), 203–208.

Parra-Ortiz, D. L., Botero-Londoño, M. A., & Botero-Londoño, J. M. (2019). Biomasa residual pecuaria: Revisión sobre la digestión anaerobia como método de producción de energía y otros subproductos. Revista UIS Ingenierías, 18(1), 149–160. https://revistas.uis.edu.co/index.php/revistauisingenierias/article/view/8343/8558

Perez, A., Montejo, I. J., Iglesias, O. J., Lopez, O. G., Martin, D. G., Garcia, D. I., Milian, I., & Hernandez, A. (2009). Tithonia diversifolia (Hemsl.) A. Gray. Pastos y Forrajes, 32(1), 1–15. https://www.redalyc.org/pdf/2691/269119696001.pdf

Porter, L., Hrstich, L., & Chan, B. 1985. The conversion of procyanidins and prodelphinidins to cyanidin and delphinidin. Phytochemistry, 25(1), 223–230. http://dx.doi.org/10.1016/S0031-9422(00)94533-3

Quintanilla-Medina, J., Joaquin-Cancino, S., Martinez-Gonzalez, J., Limas-Martinez, A., Lopez-Aguirre, D., Estrada-Drouaillet, B., & Hernandez-Melendez, J. (2018). Usos de Moringa oleifera Lam. (Moringaceae) en la alimentación de rumiantes. Agroproductividad, 11(2), 89–93. https://bit.ly/3InOY2A

Reverter, M., Lundh, T. & Lindberg, J.E. (1997). Determination of free amino acids in pig plasma by precolumn derivatization with 6-N-aminoquinolyl-N-hydroxysuccinimidyl

carbamate and high-performance liquid chromatography. Journal of Chromatography B, 696:1–8. http://dx.doi.org/10.1016/S0378-4347(97)00217-X

Riascos-Vallejos, A. R., Reyes-Gonzalez, J. J., & Aguirre-Mendoza, L. A. (2020). Nutritional characterization of trees from the Amazonian piedmont, Putumayo department, Colombia. Cuban Journal of Agricultural Science, 54(2), 257–265. https://cjascience.com/index.php/CJAS/article/view/951/1032

Rivera, J. E., Chara, J., Gomez-Leyva, J. F., Ruiz, T., & Barahona, R. (2018). Variabilidad fenotípica y composición fitoquímica de Tithonia diversifolia A. Gray para la producción animal sostenible. Livestock Research for Rural Development, 30(12), 1–20. http://www.lrrd.org/lrrd30/12/rive30200.html

Rosales, M. (1996). In vitro assessment of the nutritive value of mixtures of leaves from tropical fodder trees [Tesis de PhD, Oxford University]. Oxford University Research, pp. 86-98. https://bit.ly/3OQKpA8

Soil Survey Staff. (2014). Keys to soil taxonomy, 12th edn. United States Department of Agriculture, Natural Resources Conservation Service, Lincoln. https://www.nrcs.usda.gov/wps/PA_NRCSConsumption/download?cid=stelprdb122094&ext=pdf

Valdivie-Navarro, M., Martinez-Aguilar, Y., Mesa-Fleitas, O., Botello-Leon, A., Hurtado, C. B., & Velazquez-Marti, B. (2020). Review of Moringa oleifera as forage meal (leaves plus stems) intended for the feeding of non-ruminant animals. Animal Feed Science and Technology, 260, 114338. https://doi.org/10.1016/j.anifeedsci.2019.114338

Verdecia, D. M., Herrera, R. S., Ramirez, J. L., Bodas, R., Leonard, I., Giraldez, F. J., Andres, S., Santana, A. Mendez-Martinez, Y., & Lopez, S. (2018). Yield components, chemical characterization and polyphenolic profile of Tithonia diversifolia in Valle del Cauto, Cuba. Cuban Journal of Agricultural Science, 52(4), 457–471. https://bit.ly/3Az0bvi

Verdecia, D. M., Herrera, R. S., Ramirez, J. L., Leonard, I., Bodas, R., Andres, S., Giraldez, F. J., Valdes, C., Arceo, Y., Paumier, M., Santana, A., Alvarez, Y., Mendez, Y., & Lopez, S (2020). Effect of age of regrowth, chemical composition and secondary metabolites on the digestibility of Leucaena leucocephala in the Cauto Valley, Cuba. Agroforestry Systems, 94, 1247–1253. https://doi.org/10.1007/s10457-018-0339-y

Verdecia, D. M., Herrera, R. S., Ramirez, J. L., Leonard, I., Bodas, R, Prieto, N., Andres, S., Giraldez, F. J., Gonzalez, J. S., Arceo, Y., Paumier, M., Alvarez, Y., & Lopez, S. (2014). Effect of re-growth age in the content of secondary metabolites from Neonotonia wightii in the Valle del Cauto, Cuba. Cuban Journal of Agricultural Science 48(2), 149–154. https://bit.ly/3bRu5Au

Verdecia, D. M., Herrera, R. S., Ramirez, J. L., Paumier, M., Bodas, R., Andres, S., Giraldez, F. J., Valdes, C., Arceo, Y., Alvarez, Y., Mendez-Martinez, Y., & Lopez, S. (2020). Erythrina variegata quality in the Cauto Valley, Cuba. Agroforestry Systems, 94, 1209–1218. https://doi.org/10.1007/s10457-019-00353-z

Verdecia, D., Ramirez, J., Leonard, I., Alvarez, Y., Bazan, Y., Bodas, R., Andres, S., Álvarez, J., Giraldez, F., & Lopez, S. (2011). Calidad de la Tithonia diversifolia en una zona del Valle del Cauto. REDVET: Revista Electrónica de Veterinaria, 12(5), 1–13. https://www.redalyc.org/pdf/636/63622168004.pdf

Verdecia, D.M., Herrera-Herrera, R.C., Torres, E., Sanchez, A.R., Hernandez-Montiel, L.G., Herrera, R.S., Ramirez, J.L., Bodas, R., Giraldez, F. J., Guillaume, J., Uvidia, H., & Lopez, S. (2021). Primary and secondary metabolites of six species of trees, shrubs and herbaceous legumes. Cuban Journal of Agricultural Science 55(1), 77-93. http://scielo.sld.cu/pdf/cjas/v55n1/2079-3480-cjas-55-01-77.pdf

Zhou, C., Yu, H., Ding, Y., Guo, F., & Gong, X. J. (2017). Multi-scale encoding of amino acid sequences for predicting protein interactions using gradient boosting decision tree. PLoS ONE, 12(8), e0181426. https://doi.org/10.1371/journal.pone.0181426.

Published

2022-10-01

How to Cite

Verdecia-Acosta, D. M., Olmo-González, C., Hernández-Montiel, L. G., Ojeda-Rodríguez, A., Ramírez-de la Ribera, J. L., & Martínez-Aguilar, Y. (2022). Chemical composition of the foliage meal of Tithonia diversifolia. Enfoque UTE, 13(4). https://doi.org/10.29019/enfoqueute.856

Issue

Section

Miscellaneous