Potential of aquatic plants for the removal total coliforms and Escherichia coli in wastewaters

Authors

  • R León Universidad de Guayaquil
  • Beatriz Margarita Pernía Santos Facultad de Ciencias Naturales, Universidad de Guayaquil https://orcid.org/0000-0002-2476-7279
  • Rosa Siguencia Universidad de Guayaquil
  • S Franco Universidad de Guayaquil
  • A Noboa Universidad de Guayaquil
  • Xavier Cornejo Universidad de Guayaquil

DOI:

https://doi.org/10.29019/enfoqueute.v9n4.286

Keywords:

phytoremediation; Escherichia coli ATCC25922; Azolla caroliniana; Salvinia auriculata

Abstract

In Ecuador, many communities depend on untreated surface water as the primary source of drinking water and are contaminated with fecal coliforms and Escherichia coli. The objective of the present study was to find aquatic plants with remove of contaminated water with E. coli and total coliforms. For this purpose, the following species were sampled: Azolla caroliniana Willd., Eichhornia crassipes, Pistia stratiotes, Salvinia auriculata, Ceratopteris thalictroides and Lemna sp. (Positive control). The plants were reproduced in vitro and bioassays were performed to verify their ability to remove E. coli. Assays were run by triplicate in 0.5 L of water with fertilizer and an E. coli ATCC25922 reference strain was inoculated. As negative control the bacteria without plants and positive control were inoculated with the plant L. minor. After 7 days, the remaining bacterial load was determined. To analyze E. coli, the technique ISO 9308-1 was used. A percentage of 99% E. coli removal was found for A. caroliniana, E. crassipes, C. thalictroides (L.) Brongn and Lemna minor. And 100% for P. stratiotes and S. auriculata. Subsequent waste water tests were performed in which S. auriculate and A. caroliniana achieved 100% removal of the coliforms and the remaining lower efficiency. The use of these species is proposed for the treatment of wastewaters.

Metrics

Downloads

Download data is not yet available.

References

Akça, L., Tunçsiper, B., y Ayaz, S. (2012). Coliform bacteria removal from septic wastewater in a pilot-scale combined constructed wetland system. Environmental Engineering and Management Journal, 11(10), 1873–1879.
APHA/AWWA/WEF. (2012). Standard Methods for the Examination of Water and Wastewater. Standard Methods. 541 p.
Axelrood, P., Clarke, A., Radley, R., y Zemcov, S. (1996). Douglas-fir root-associated microorganisms with inhibitory activity towards fungal plant pathogens and human bacterial pathogens. Canadian Journal of Microbiology, 42(7), 690-700.
Bhavnani, D., De Los Ángeles Bayas, R., Lopez, V. K., Zhang, L., Trueba, G., Foxman, B. y Eisenberg, J. N. S. (2016). Distribution of enteroinvasive and enterotoxigenic Escherichia coli across space and time in northwestern Ecuador. American Journal of Tropical Medicine and Hygiene, 94(2), 276–284. https://doi.org/10.4269/ajtmh.14-0337
Brix, H. (1997). Do macrophytes play a role in constructed treatment wetlands? Water Science and Technology,35(5),11-17.
Buckley, D., Bender, D., Stahl, D., Martinko, J., y Madigan, M. (2015). Brock. Biología de los microorganismos (14th ed.). Pearson.
Castrillo, M., Pernia, B., De Sousa, A., y Reyes, R. (2012). Utilization of different aspects associated with cadmium tolerance in plants to compare sensitive and bioindicator species. In: Phytotechnologies: Remediation of Environmental Contaminants. Taylor and. 2012. pp. 427-440.
Caviedes, D. I., Delgado, D. R., y Olaya, A. (2016). Remoción de metales pesados comúnmente generados por la actividad industrial, empleando macrófitas neotropicales. Producción + Limpia, 11(2), 126–149. https://doi.org/10.22507/pml.v11n2a11
Delgadillo, A.E. y González, C.A. (2011). Fitorremediación: una alternativa para eliminar la Contaminación. Tropical and Subtropical Agroecosystems. 14, 597–612.

Dirección Nacional de Vigilancia Epidemiologica. (2017). Anuario epidemiológico 1994-2016. Recuperado de https://public.tableau.com/profile/vvicentee80#!/vizhome/ETAS-2014/ANUARIO
El Universo. (2013, 25 de mayo). Elevados niveles de hidrocarburos y coliformes en aguas. Versión Digital. Pacayacu. Recuperado de http://www.eluniverso.com/noticias/2013/05/25/nota/955126/sucumbios-elevados-niveles-hidrocarburos-coliformes-agua
Gerhardt, K., Gerwing, P., y Greenberg, B. (2017). Opinion: Taking phytoremediation from proven technology to accepted practice. Plant Science, 256, 170-185.
Gram, C. (1884). The differential staining of Schizomycetes in tissue sections and in dried preparations. Fortschitte Der Medicin, 2, 185–189.
Green, M., Griffin, P., Seabridge, J., Dhobie, D. (1997). Removal of bacteria in subsurface flow wetlands. Water Science and Technology, 35(5),109-116.
Levy, K., Nelson, K. L., Hubbard, A., y Eisenberg, J. N. S. (2012). Rethinking indicators of microbial drinking water quality for health studies in tropical developing countries: Case study in northern coastal Ecuador. American Journal of Tropical Medicine and Hygiene, 86(3), 499–507. https://doi.org/10.4269/ajtmh.2012.11-0263
Mantovi, P., Marmiroli, M., Maestri, E., Tagliavini, S., Piccinini, S., y Marmiroli, N. (2003). Application of a horizontal subsurface flow constructed wetland on treatment of dairy parlor wastewater. Bioresource Technology, 88(2), 85–94. https://doi.org/10.1016/S0960-8524(02)00291-2
Mayo, A. W. (2004). Kinetics of bacterial mortality in granular bed wetlands. Physics and Chemistry of the Earth, 29(15–18), 1259–1264. https://doi.org/10.1016/j.pce.2004.09.030
Montoya, H.H. (2008). Microbiología básica para el área de la salud y afines. (Segunda). Antioquia: Universidad de Antioquia.
Neralla, S., y Weaver, R. (2000). Phytoremediation of domestic wastewater for reducing populations of Escherichia Coli and MS-2 coliphage. Environmental Technology, 21(6), 691–698. https://doi.org/10.1080/09593330.2000.9618954
Pernía, B., Mero, M., Muñoz, J., Bravo, K., Morán, N., Zambrano, J., yTorres, G. (2016). Plantas acuáticas con potencial para fitoextracción de Cadmio en arrozales del Cantón Daule, provincia del Guayas, Ecuador. Ciencias Naturales Y Ambientales, 10(2), 37–51.
Rao, G., Eisenberg, J. N. S., Kleinbaum, D. G., Cevallos, W., Trueba, G., y Levy, K. (2015). Spatial variability of Escherichia coli in rivers of northern coastal Ecuador. Water (Switzerland), 7(2), 818–832. https://doi.org/10.3390/w7020818
Rojas, J. (2005). Diversidad bacteriana en el perifiton de raíces de Eichhornia sp, Pistia sp y Azolla sp. Tesis de Ingeniería en Biotecnología. Instituto Tecnológico de Costa Rica.
Rojas-Higuera, N., Sánchez-Garibello A, Matiz-Villamil A, Salcedo-Reyes JC, Carrascal-Camacho AK, y Pedroza-rodríguez, A.M. (2010). Evaluación de tres métodos para la inactivación de coliformes y Escherichia coli presentes en agua residual doméstica, empleada para riego. Univ Sci. 15(2),139-149.
Solano, M. L., Soriano, P., y Ciria, M. P. (2004). Constructed Wetlands as a Sustainable Solution for Wastewater Treatment in Small Villages. Biosystems Engineering, 87(1), 109–118. https://doi.org/10.1016/j.biosystemseng.2003.10.005
Solic, M., y Krstuloviic, N. (1992). Separate and combined effects of solar radiation, temperature, salinity, and pH on the survival of faecal coliforms in seawater. Marine Pollution Bulletin, 24(8), 411–416. https://doi.org/10.1016/0025-326X(92)90503-X
Universidad Agraria del Ecuador. (2009). Proyecto Biomonitoreo de la calidad del agua para determinar la naturaleza y grado de la contaminación por la agricultura y actividades afines en los principales rios en la cuenca del río Guayas. Guayaquil. Obtenido de http://www.uagraria.edu.ec/documentos/investigacion/UAE_Biomonitoreo_informe_2_dic_2009.pdf
Valderrama, L. T., Campos, C., Velandia, S., & Zapata, N. (1987). Evaluación del efecto del tratamiento con plantas acuáticas (E.crassipes, Lemna sp. y L. Laevigatum) en la remocion de indicadores de contaminación fecal en aguas residuales domesticas. Seminario Internacional Sobre Métodos Naturales Para El Tratamiento de Aguas Residuales, 193–201.
Verma, R. y Suthar, S. (2015). Lead and cadmium removal from water using duckweed - Lemna gibba L.: Impact of pH and initial metal load. Alexandria Engineering Journal.,54(4),1297-1304.
Vizcaino, L., y Fuentes, N. (2016). Efectos de Eisenia foetida y Eichhornia crassipes en la remoción de materia orgánica, nutrientes y coliformes en efluentes domésticos. Rev. U.D.C.A. Actual Divulg. Cient. 19, 189-198.
Wafaa, A.E., Ismail, G., Farid, A.E., Tarek, T., y Hammad, D. (2007). Assessment of the Efficiency of Duckweed (Lemna gibba) in Wastewater Treatment. Int J Agriculure Biol., 9(5), 681-687.
Wang, Y., Ho, S., Cheng, C., Guo, W., Nagarajan, D., y Chang, J. (2016). (2016)- Perspectives on the feasibility of using microalgae for industrial wastewater treatment. Bioresource Technology, 222, 485-497.
Wu, S., Carvalho, P., Müller, J., Manoj, V., Dong, R. (2016).Sanitation in constructed wetlands: A review on the removal of human pathogens and fecal indicators. Science of the Total Environment. 541, 8–22.
Zimmels, Y., Kirzhner, F., y Malkovskaja, A. (2006). Application of Eichhornia crassipes and Pistia stratiotes for treatment of urban sewage in Israel. Journal of Environmental Management, 81(4), 420–428. https://doi.org/10.1016/j.jenvman.2005.11.014

Published

2018-12-21

How to Cite

León, R., Pernía Santos, B. M., Siguencia, R., Franco, S., Noboa, A., & Cornejo, X. (2018). Potential of aquatic plants for the removal total coliforms and Escherichia coli in wastewaters. Enfoque UTE, 9(4), pp. 131 - 144. https://doi.org/10.29019/enfoqueute.v9n4.286

Issue

Section

Environment