Metodología Alternativa para Desconexión de Carga por Baja Frecuencia Basado en el Modelo Semi-Adaptativo

Autores/as

  • Universidad Politécnica Salesiana
  • Universidad Politécnica Salesiana
  • Universidad Pontificia Bolivariana

DOI:

https://doi.org/10.29019/enfoque.v11n1.587

Palabras clave:

Desconexión de carga, Deslastre de carga, Deslastre de carga por baja frecuencia, Estabilidad de los sistemas de potencia, Respuesta de frecuencia del sistema

Resumen

El análisis de la estabilidad en los sistemas eléctricos de potencia se fundamenta en el estudio en estado dinámico del voltaje y frecuencia, ya que los mismos al momento que se presenta alguna contingencia fluctúan drásticamente debido a los controles primarios y secundarios de tensión y frecuencia de los sistemas de potencia que actúan sobre los generadores. Para solventar los posibles problemas de estabilidad que se pueden presentar en los sistemas de potencia se han desarrollado diversas técnicas que actúan sobre las máquinas generadoras para su protección como sobre las cargas para el corte de energía. La presente investigación plantea una metodología alternativa para la desconexión de carga por baja frecuencia como opción para salvar al sistema de potencia de un posible colapso por inestabilidad por caída de la frecuencia, logrando mejorar los resultados expuestos por otras técnicas mejorando el rango de cambio de frecuencia, la desviación de frecuencia y los efectos de la desconexión de la demanda. La metodología propuesta se la probó en el sistema de 14 buses del IEEE.

Metrics

Descargas

La descarga de datos todavía no está disponible.

Citas

Aguila, A., Carrión, D., & Ortiz, L. (2015). Analysis of power losses in the asymmetric construction of electric distribution systems. IEEE Latin America Transactions, 13(7), 2190–2194. https://doi.org/10.1109/TLA.2015.7273776
Anderson, P. M., Fouad, A. A., & Happ, H. H. (1979). Power System Control and Stability. In IEEE Transactions on Systems, Man, and Cybernetics (Vol. 9). https://doi.org/10.1109/TSMC.1979.4310158
Arias, D., Vargas, L., & Rahmann., C. (2015). WAMS - Based Voltage Stability Indicator Considering Real Time Operation. Latin America Transactions, IEEE (Revista IEEE America Latina), 13(5), 1421–1428.
Carrión, D., Ayo, A., & Gonzalez, J. W. (2019). Under Frecuency Load Disconection Scheme Based on Improvement to Semi-Adaptative Model. 2019 International Conference on Information Systems and Computer Science (INCISCOS).
Carrion, D., & Gonzalez, J. W. (2018). Optimal PMU Location in Electrical Power Systems Under N-1 Contingency. 2018 International Conference on Information Systems and Computer Science (INCISCOS), (1), 165–170. https://doi.org/10.1109/INCISCOS.2018.00031
Carrión, D., & González, J. W. (2019). Ubicación óptima de PMU considerando restricciones de contingencias N-1 en sistemas eléctricos de potencia. Enfoque UTE, 10(1), 1–12. https://doi.org/10.29019/enfoqueute.v10n1.437
Carrión, D., González, J. W., Isaac, I. A., & López, G. J. (2017). Optimal Fault Location in Transmission Lines Using Hybrid Method. 2017 IEEE PES Innovative Smart Grid Technologies Conference, 6. https://doi.org/10.1109/ISGT-LA.2017.8126757
Carrion, D., Gonzalez, J. W., Isaac, I. A., Lopez, G. J., & Cardona, H. A. (2017). Load Characterization Based on Voltage and Current Phasorial Measurements in Micro-Grids. 2017 International Conference on Information Systems and Computer Science (INCISCOS), 1–6. https://doi.org/10.1109/INCISCOS.2017.23
Carrión, D., & Ortiz, L. (2013). Generación distribuida a partir de bicicletas estáticas y sistemas híbridos. Ingenius, 44–48.
Correa, E., Inga, E., Inga, J., & Hincapie, R. (2018). Electrical consumption pattern base on meter data management system using big data techniques. Proceedings - 2017 International Conference on Information Systems and Computer Science, INCISCOS 2017, 2017-Novem, 334–339. https://doi.org/10.1109/INCISCOS.2017.19
Guerrón, G., García, E., & Montero, A. (2014). Influencia de las ráfagas de viento en la calidad de la energía de los parques eólicos ( Influence of wind gusts in power quality on wind farms ). Enfoque UTE, 5(3), 25–44.
Inga Ortega, E., Inga, J., Correa, E., & Hincapié, R. (2018). Reconstrucción del patrón de consumo eléctrico a partir de Big Data mediante técnica de MapReduce. Enfoque UTE, 9(1), 177–187. https://doi.org/10.29019/enfoqueute.v9n1.220
Kundur, P. (1994). Power System Stability and Control (1ST editio). New York: McGraw-Hill Professional.
Kupzog, F. (2008). Frequency-Responsive Load Management in Electric Power Grids (1st Editio). Südwestdeutscher Verlag für Hochschulschriften.
Laghari, J. A., Mokhlis, H., Bakar, A., Halim, A. B., Karimi, M., & Shahriari, A. (2012). An Intelligent Under Frequency Load Shedding Scheme for Islanded Distribution Network. Power Engineering and Optimization Conference (PEDCO) Melaka, Malaysia, 2012 Ieee International, (June), 40–45.
Liu, B., & Thomas, D. (2011). ROCOF protection in distributed system with noise and non-linear load. 2011 10th International Conference on Environment and Electrical Engineering, EEEIC.EU 2011 - Conference Proceedings, 2–5. https://doi.org/10.1109/EEEIC.2011.5874715
Maldonado, M. G. R. (2017). Wireless Sensor Network for Smart Home Services Using Optimal Communications. 2017 International Conference on Information Systems and Computer Science (INCISCOS), 27–32. https://doi.org/10.1109/INCISCOS.2017.21
Massucco, S., & Delfino, B. (2001). Implementation and Comparison of Different Under Frequency Load-Shedding Schemes. Power Engineering Society Summer Meeting, 2001 (Volume:1 ), 307–312.
Mazaher, K., & Hazlie, M. (2014). Under-Frequency Load Shedding Scheme for Islanded Distribution Network (1st Editio). LAP Lambert Academic Publishing.
Perumal, I. N., & Ying, C. C. (2004). A Proposed Strategy of Implementation for Load Shedding and Load Recovery with Dynamic Simulations. Power and Energy Conference, 2004. PECon 2004. Proceedings. National, 185–189.
Ruiz, M., Masache, P., & Dominguez, J. (2018). High Availability Network for Critical Communications on Smart Grids. (Ssn), 1–5.
Ruiz Maldonado, M. G., & Inga, E. (2019). Asignación óptima de recursos de comunicaciones para sistemas de gestión de energía. Enfoque UTE, 10(1), 141–152. https://doi.org/10.29019/enfoqueute.v10n1.447
Schmitz, T. L., & Smith, K. S. (2009). Machining Dynamics: Frequency Response to Improved Productivity. New York: Springer.
Shafiullah, M., Alsharif, B. S., Hossain, M. I., & Ahsan, M. Q. (2014). Impact study on a load rich island and development of frequency based auto load shedding scheme to improve service reliability of the island. Informatics, Electronics & Vision (ICIEV), 2014 International Conference On.
Shokooh, F., Dai, J. J., Shokooh, S., Tastet, J., Castro, H., Khandelwal, T., & Donner, G. (2005). An Intelligent Load Shedding ( ILS ) System Application in a Large Industrial Facility. Industry Applications Conference, 2005. Fourtieth IAS Annual Meeting. Conference Record of the 2005 (Volume:1 ), 2(949).
Short, J. A., Infield, D. G., & Freris, L. L. (2007). Stabilization of Grid Frequency Through Dynamic Demand Control. Power Systems, IEEE Transactions on (Volume:22 , Issue: 3 ), 22(3), 1284–1293.
Systems, P., Committee, R., Power, I., & Society, E. (2007). IEEE Std C37.117TM-2007, IEEE Guide for the Application of Protective Relays Used for Abnormal Frequency Load Shedding and Restoration.
Ten, C. F., & Crossley, P. A. (2008). EVALUATION OF ROCOF RELAY PERFORMANCES ON NETWORKS WITH DISTRIBUTED GENERATION. Developments in Power System Protection, 2008. DPSP 2008. IET 9th International Conference On, 523–528.
Tofis, Y., Hadjidemetriou, L., & Kyriakides, E. (2013). An intelligent load shedding mechanism for maintaining frequency stability. PowerTech (POWERTECH), 2013 IEEE Grenoble, 1–5.
Zin, a. a. M., Hafiz, H. M., & Wong, W. K. (2004). Static and dynamic under-frequency load shedding: a comparison. 2004 International Conference on Power System Technology, 2004. PowerCon 2004., 1(November), 941–945. https://doi.org/10.1109/ICPST.2004.1460129

Publicado

2020-01-31

Cómo citar

Diego, Alex, & Jorge Wilson. (2020). Metodología Alternativa para Desconexión de Carga por Baja Frecuencia Basado en el Modelo Semi-Adaptativo. Enfoque UTE, 11(1), pp. 96 - 107. https://doi.org/10.29019/enfoque.v11n1.587

Número

Sección

Misceláneos