Emulsiones gelificadas enriquecidas con harina de garbanzo como potencial sustituto de grasa animal

Autores/as

DOI:

https://doi.org/10.29019/enfoqueute.744

Palabras clave:

sustitutos de grasa, harina libre de gluten, estabilidad térmica, sinéresis, dureza

Resumen

El objetivo de este trabajo fue desarrollar emulsiones gelificadas de aceite en agua (O/W), formuladas con aceite de lino y harina de garbanzo con adecuadas propiedades estructurales y tecnológicas para ser empleadas como sustitutos de grasa animal. Para esto, se elaboraron dos formulaciones, una sin antioxidante y la otra con el antioxidante sintético más empleado en la industria. La harina de garbanzo y la gelatina se hidrataron durante 3 horas con agitación a 3000 r. p. m., luego se calentaron durante 30 minutos a 90 °C, se enfriaron a 30 °C y se procesaron nuevamente a 3000 r. p. m. durante 30 segundos, mientras la fase oleosa se incorporó lentamente con el agente emulsionante. Las mezclas se colocaron en contenedores, se dejaron estabilizar a 25° C durante 30 minutos y luego se refrigeraron por 24 horas. Se determinó la sinéresis, estabilidad térmica, oxidación lipídica, y los espectros infrarrojos de las muestras. Se pueden observar diferencias significativas para la oxidación de lípidos (p < 0.05), sin embargo, la sinéresis y estabilidad térmica no mostraron diferencias (p > 0.05), evidenciando las emulsiones gran capacidad de retención de agua y grasa, lo cual puede atribuirse a la estructura proteica resultante de calentar la emulsión para dar lugar a la gelificación. Las emulsiones gelificadas obtenidas presentan adecuadas propiedades estructurales y tecnológicas, sin exudación de fluidos, con valores de oxidación por debajo del límite de detección de 1.59 mg de MDA / kg de muestra. Dadas las características de la emulsión obtenida se abre un nuevo campo de la aplicación de estrategias tecnológicas para la obtención de sustitutos de grasa animal como ingrediente graso saludable en los productos cárnicos.

Metrics

Descargas

La descarga de datos todavía no está disponible.

Citas

Aguilar-Raymundo, V. G., y Vélez-Ruiz, J. F. (2013). Propiedades nutricionales y funcionales del garbanzo (Cicer arietinum L). Temas Selectos de Ingeniería en Alimentos. 7(2), 25-34. https://tsia.udlap.mx/propiedades-nutricionales-y-funcionales-del-garbanzo-cicer-arietinum-l/

Ashkar A, Laufer S, Rosen-Kligvasser J, et al. (2019) Impact of different oil gelators and oleogelation mechanisms on digestive lipolysis of canola oil oleogels. Food Hydrocolloids, 97,105218. https://doi.org/10.1016/j.foodhyd.2019.105218

Delgado-Pando, G., Cofrades, S., Ruiz-Capillas, C., Teresa Solas, M. y Jiménez-Colmenero, F. (2010). Healthier lipid combination oil-in-water emulsions prepared with various protein systems: An approach for development of functional meat products. European Journal of Lipid Science and Technology, 112(7), 791–801. https://doi.org/10.1002/ejlt.200900234

De Souza Paglarini, C., de Figueiredo, G., Honório, A. R., Mokarzel, L., Vidal, V. A., Ribeiro, A. P. B., Lopes Cunha, R. y Rodrigues Pollonio, M. A. (2019). Functional emulsion gels as pork back fat replacers in bologna sausage. Food structure, 81(5), 1230-1242, https://doi.org/10.1016/j.foostr.2019.100105

Dickinson, E. (2011). Double emulsions stabilized by food biopolymers. Food Biophysics 6(1), 1-11. http://dx.doi.org/10.1007/s11483-010-9188-6

Dickinson, E. (2012). Emulsion gels: The structuring of soft solids with protein stabilized oil droplets. Food Hydrocolloids, 28, 224–241. https://doi.org/10.1016/j.foodhyd.2011.12.017

Dickinson, E. (2013). Stabilising emulsion-based colloidal structures with mixed food ingredients. Journal of the Science of Food and Agriculture, 93, 710–721. https://doi.org/10.1002/jsfa.6013

Félix, M., Cermeno, M. y Fitzgerald, R. J. (2020). Influence of hydrolysis on the bioactive properties and stability of chickpea protein based O/W emulsions. Journal of Agricurltural and Food Chemistry. https://doi.org/10.1021/acs.jafc.0c02427

Félix, M., Isurralde, N., Romero, A. y Guerrero, A. (2018). Influence of pH value on microstructure of oil-in-water emulsions stabilized by chickpea protein flour. Food Science and Technology International, 24(7), 555-563. https://doi.org/10.1177/1082013218774707

Felix, M., Romero, A., Sanchez, C.C. y Guerrero, A. (2019). Modelling the non-linear interfacial shear rheology behaviour of chickpea protein-adsorbed complex oil/water layers. Applied Surface Science, 469, 792-803. https://doi.org/10.1016/j.apsusc.2018.11.074

Herrero, A. M., Carmona, P., Jiménez-Colmenero, F., Ruiz-Capillas, C. (2014). Polysaccharide gels as oil bulking agents: Technological and structural properties. Food Hydrocolloids 36, 374-381. http://dx.doi.org/10.1016/j.foodhyd.2013.08.00

Herrero, A. M., Ruiz-Capillas, C., Pintado, T., Carmona, P. y Jiménez-Colmenero, F. (2018). Elucidation of lipid structural characteristics of chia oil emulsion gels by Raman spectroscopy and their relationship with technological properties. Food Hydrocollids. 77, 212-219. https://doi.org/10.1016/j.foodhyd.2017.09.036

Hwang, H. S., Fhaner, M., Winkler-Moser, J. K. y Liu, S. X. (2018). Oxidation of Fish Oil Oleogels Formed by Natural Waxes in Comparison With Bulk Oil. European Journal of Lipid Science and Technology, 120(5),1700378. https://doi.org/10.1002/ejlt.201700378

Jiménez-Colmenero, F., Herrero, A., Pintado, T., Solas, M. T., Ruiz-Capillas, C. (2010) Influence of emulsified olive oil stabilizing system used for pork backfat replacement in frankfurters. Food Research International, 43(8), 2068–2076. https://doi.org/10.1016/j.foodres.2010.06.010

Jiménez-Colmenero, F., Cofrades, S., Herrero, A.M., Fernández-Martín, F., Rodríguez-Salas, L. y Ruiz-Capillas, C. (2012). Konjac gel fat analogue for use in meat products: Comparison with pork fats. Food Hydrocolloids, 26, 63-72. https://doi.org/10.1016/j.foodhyd.2011.04.007

Kaur, M. y Singh, N. (2005). Studies on functional, thermal and pasting properties of flours from different chickpea (Cicer arietinum L.) cultivars. Food Chemistry 91 403–411. https://doi.org/10.1016/j.foodchem.2004.06.015

Liu, W.-Y., Feng, M.-Q., Wang, M., Wang, P., Sun, J., Xu, X.-L. y Zhou, G.H. (2018). Influence of flaxseed gum and NaCl concentrations on the stability of oil-in-water emulsions. Food Hydrocolloids, 79, 371-381. https://doi.org/10.1016/j.foodhyd.2018.01.010

Mao, L.K., y Miao, S. (2015). Structuring food emulsions to improve nutrient delivery during digestion. Food Engineering Reviews, 7(4), 439-451. http://dx.doi.org/10.1007/s12393-015-9108-0

McClements, D. J. (2012). Advances in fabrication of emulsions with enhanced functionality using structural design principles. Current Opinion in Colloid & Interface Science, 17(5), 235-245. http://dx.doi.org/10.1016/j.cocis.2012.06.002

Mokni Ghribi, A., Maklouf Gafsi, I., Sila, A., Blecker, C., Danthine, S., Attia, H., Bougatef, A., Besbes, S. (2015). Effects of enzymatic hydrolysis on conformational and functional properties of chickpea protein isolate. Food Chemistry,187, 322-330. https://doi.org/10.1016/j.foodchem.2015.04.109

Mozaffarani, D. y Clarke, R. (2009). Quantitative effects on cardiovascular risk factors and coronary heart disease risk of replacing partially hydrogenated vegetable oils with other fats and oils. European Journal of Clinical Nutrition, 63(2), 22–S33. https://doi.org/10.1038/sj.ejcn.1602976

Muñoz-González, I., Merino-Álvarez, E., Salvador, M., Pintado, T., Ruiz-Capillas, C., Jiménez-Colmenero, F. y Herrero, A.M. (2019). Chia (Salvia hispanica L.) a Promising Alternative for Conventional and Gelled Emulsions: Technological and Lipid Structural Characteristics. Gels, 5(19), 1-12. https://doi.org/10.3390/gels5020019

Ospina-E, J. C., Rojnano, B., Ochoa, O., Pérez‐Álvarez, J.A. y Fernández‐López, J. (2014). Development of frankfurter-type sausages with healthier lipid formulation and study of its nutritional, sensory and stability properties. European Journal of Lipid Science and Technology, https://doi.org/10.1002/ejlt.201400157

Ozer, O. y Sariçoban, C. (2010). The Effects of Butylated Hydroxyanisole, Ascorbic Acid, and α-Tocopherol on Some Quality Characteristics of Mechanically Deboned Chicken Patty during Freeze Storage. Czech Journal of Food Science, 28(2), 150-160. https://doi.org/10.17221/160/2009-CJFS

Pehlivanoglu, H., Demirci, M., Toker, O. S., Konar, N., Karasu, S., y Sagdic, O. (2018). Oleogels, a promising structured oil for decreasing saturated fatty acid concentrations: Production and food-based applications. Critical Reviews in Food Science and Nutrition, 58,1-12. https://doi.org/10.1080/10408398.2016.1256866

Pintado, T., Ruiz-Capillas, C., Jiménez-Colmenero, F., Carmona, P. y Herrero, A.M. (2015). Oil-in-water emulsion gels stabilized with chia (Salvia hispanica L.) and cold gelling agents: Technological and infrared spectroscopic characterization. Food Chemistry, 185, 470-478. http://dx.doi.org/10.1016/j.foodchem.2015.04.024

Pintado, T., Herrero, A. M., Jiménez-Colmenero, F. y Ruiz-Capillas, C. (2016). Strategies for incorporation of chia (Salvia hispanica L.) in frankfurters as a health-promoting ingredient. Meat Science 114, 75–84. https://doi.org/10.1016/j.meatsci.2015.12.009

Poyato C, Ansorena D, Berasategi I, Navarro-Blasco, I. y Astiasarán, I. (2014). Optimization of a gelled emulsion intended to supply ω-3 fatty acids into meat products by means of response surface methodology. Meat Science, 98: 615-621. https://doi.org/10.1016/j.meatsci.2014.06.016

Romero, M.C., Fogar, R.A., Rolhaiser, F., Clavero, V. V., Romero, A. M. y Judis, M. A. (2018). Development of gluten-free fish (Pseudoplatystoma corruscans) patties by response surface methodology. Journal of Food Science and Technology, 55(5):1889-1902. https://doi.org/10.1007/s13197-018-3106-1

Sato, A. C. K., Moraes, K. E. F. P. y Cunha, R. L. (2014) Development of gelled emulsions with improved oxidative and pH stability. Food Hydrocolloids, 34, 184-192. https://doi.org/10.1016/j.foodhyd.2012.10.016

Shariati-Ievari, S., Ryland, D., Edel, A., Nicholson, T., Suh, M. y Aliani, M. (2016). Sensory and Physicochemical Studies of Thermally Micronized Chickpea (Cicer arietinum) and Green Lentil (Lens culinaris) Flours as Binders in Low-Fat Beef Burgers. Journal of Food Science, 81(5), 1230-1242. https://doi.org/10.1111/1750-3841.13273

Usoltsev, D., Sitnikova, V., Kajava, A. y Uspenskaya, M. (2019). Systematic FTIR spectroscopy study of the secondary structure changes in human serum albumin under various denaturation conditions. Biomolecules, 9, 1-17. https://doi.org/10.3390/biom9080359

Vieira, S. A., McClements, D. J., Decker, E. A. (2015). Challenges of Utilizing Healthy Fats in Foods. Advances in Nutrition, 6, 309-317. https://doi.org/10.3945/an.114.006965

Yilmaz, E. y Ögütcü M. (2015). Oleogels as spreadable fat and butter alternatives: Sensory description and consumer perception. RSC Advances, 5, 50259-50267. https://doi.org/0.1039/c5ra06689a

Publicado

2021-07-01

Cómo citar

Britez, M. G., Rolhaiser, F. A., Fernández, C. L., Fogar, R. A., & Romero, M. C. (2021). Emulsiones gelificadas enriquecidas con harina de garbanzo como potencial sustituto de grasa animal. Enfoque UTE, 12(3), pp. 24 - 35. https://doi.org/10.29019/enfoqueute.744

Número

Sección

Misceláneos