Numerical analysis of the speed profiles of a water flow through a gradual reduction pipe

Authors

  • LUIS FERNANDO TOAPANTA RAMOS Universidad Politécnica Salesiana
  • Gabriel Alejandro Bohórquez Peñafiel Universidad Politécnica Salesiana
  • Luis Eduardo Caiza Vivas Universidad Politécnica Salesiana
  • William Quitiaquez Sarzosa Universidad Politécnica Salesiana

DOI:

https://doi.org/10.29019/enfoqueute.v9n3.290

Keywords:

CFD, ANSYS fluent, gradual contraction, Pressure;, speed profiles, kinetic turbulence

Abstract

The objective of this research work is to understand the behavior of water flow through gradual contraction. Computational fluid dynamics (CFD) is a useful approach to solve the equations that describe the movement of fluids, using numerical methods and computational techniques. This area of mechanics provides the fundamentals of pipe hydraulics and channel hydraulics. A study of the flow through the pipeline has been made to calculate the children in the changes of the geometry. The energy losses derived from the pipes. Calculation of the cases: the occurrences of the incidents in the geometry on the part of the student and also with the help of the ANSYS software fluently. Calculations were used using the K-epsilon model. This simulation provides the values of pressure, velocity and kinetic turbulence in several sections of the pipe where water is its flow.

Downloads

Download data is not yet available.

References

Garzón Cruz, J. C. (20 de Enero de 2014). Universidad EIA. Obtenido de http://fluidos.eia.edu.co/hidraulica/articuloses/flujoentuberias/reducci%C3%B3n/reducci%C3%B3n.htm
Anaya-Durand, A., Cauich-Segovia, I., Funabazama-Bárcenas, I., & Gracia-Medrano-Bravo, O. (2014). Evaluación de ecuaciones de factor de fricción explícito. Revista Mexicana Ingeniería Química, II(25), 128-134.
ANSYS. (s.f.). ANSYS CFX Release Notes for 14.0.
Bae, Y., & Kim, Y. (2014). Prediction of local loss coefficient for turbulent flow in axisymmetric sudden expanexpansions. Effect of Reynolds number. Journal Annals of Nuclear Energy(73), 33-38.
Bardina, J. E., Huang, P. G., & Coakley, T. J. (1997). Turbulence Modeling Validation Testing and Development. NASA Technical Memorandum (110446).
Bariviera, D., Frizzone, J., & Rettore, A. (2013). Dimensional analysis approach to estimate local head losses in microirrigation connectors. Journal Irrigation Science, 3(32), 169-179.
Binding, D., Phillips, P., & Phillips, T. (2006). Contraction/expansion flows: The pressure drop and related issues . Journal of Non-Newtonian Fluid Mechanics(137), 31-38.
Elbatran, a., Yaakob, H., & Ahmeda, B. (2015). Operation, performance and economic analysis of low head micro-hydropower turbines for rural and remote areas. Renewable and Sustainable Energy(43), 43-50.
F, M. (2000). Design and off design pipe network geothermal power plant analysis with power pipe simulator. Energy Conversion & Management, XLI(12), 1223-1235.
Fester, V., Mbiya, B., & Slatter, P. (2008). Energy losses of non-Newtonian fluids in sudden pipe contractions. Chemical Engineering Journal(145), 57-63.
Fox, R., Pritchard, P., & & Mcdonald, J. (2006). Introduction To Fluid Mechanics. Usa: ohn Wiley & Son Inc.
Franzini, J., & Finnemore, E. (1999). Mecánica de fluidos,con aplicaciones en ingeniería. España: Mc Graw-Hill, Inc.
Mataix, C. (2010). Mecánica de Fluidos y Máquinas Hidráulicas. México: Editorial Alfaomega.
Menter, F. (1994). Two-equation eddy-viscosity turbulence models for engineering. AIAA-Journal, 32(8), 1598-1605.
Montilva, M. (2009). Flujo Laminar en la Región de entrada de un tubo recto precedido por una tuberia curva. Venezuela.
Mott, R. L. (2006). Pérdidas Menores. En Mecánica de Fluidos (págs. 279-320). México: Pearson Educación.
Pedros, R. (2010). Densidad y Viscosidad. España: AISC.
Rend, R., Sparrow, E., Bettenhausen, D., & Abraham, J. (2013). Parasitic pressure losses in diffusers and in their downstream piping systems for fluid flow and heat transfer. International Journal of Heat and Mass Transfer(61), 56-61.
Schiller, L. (1992). Die Entwichklung der Laminaren Geschwindigkeitsvertlung und ihre Bedeutung fur. Rusia: Z Angew Math,.
Sesma, J., Molina-Martínez, J., Cavas-Martínez, F., & Fernández-Pacheco, D. (2015). A mobile application to calculate optimum drip irrigation laterals. Agricultural Water Management(151), 13-18.
Sotelo, A. G. (2013). Hidráulica General. Hidráulica General: LIMUSA.
Streeter, V., Wylie, E., & & Bedford, K. (2000). Mecánica de fluidos. Bogotá, Colombia: Mc Graw-Hill Internacional SA.
Toro, A. D. (2012). COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF BUTTERFLY VALVE PERFORMANCE FACTORS. Logan, Utah.
Unet, U. d. (2016). Flujos en tuberias,Flujos Internos. Caracas: AISC. Obtenido de http://www.unet.edu.ve/~fenomeno/F_DE_T-153.htm
Villaroel Quinde, L. (18 de Noviembre de 2015). Pontificia Universidad Católica del Perú. Recuperado el 2015, de http://tesis.pucp.edu.pe/repositorio/handle/123456789/6408
Villarroel Quinde, L. F. (2015). SIMULACIÓN NUMÉRICA DE UN FLUJO DE AGUA A TRAVÉS DE UNA VÁLVULA TIPO MARIPOSA DE DOBLE EXCENTRICIDAD. Lima - Perú.
Yildirim, G., & Shing, V. P. (2010). A MathCAD procedure for commercial pipeline hydraulic design considering local energy losses. Advances in Engineering Software(41), 489-496.

Published

2018-09-28

How to Cite

TOAPANTA RAMOS, L. F., Bohórquez Peñafiel, G. A., Caiza Vivas, L. E., & Quitiaquez Sarzosa, W. (2018). Numerical analysis of the speed profiles of a water flow through a gradual reduction pipe. Enfoque UTE, 9(3), pp. 80 – 92. https://doi.org/10.29019/enfoqueute.v9n3.290

Issue

Section

Miscellaneous