Parallel robot prototype driven by four cables: experimental results
DOI:
https://doi.org/10.29019/enfoqueute.v10n1.440Keywords:
cables, kinematic, dynamic, PID, robot.Abstract
Parallel cable robots are a special class of parallel robots which are formed by replacing rigid links with cables. Due to the characteristics provided by the cables, like low inertia and greater range of motion, this type of robots can perform a wide range of applications such as: moving cameras from one place to another in sporting events, motoring industry and mainly in rehabilitation of limbs. However, due to the unilateral property of cables, keeping them tensioned becomes a great challenge. This article describes the construction of a parallel robot driven by four cables with the aim to draw three figures through the study of the kinematic and dynamic model considering the redundancy, i.e., more cables than degrees of freedom, in order to avoid those cables that require more tension during the motion of the end-effector.
Downloads
References
Aguas, X. I., Cuaycal, A., Paredes, I., & Herrera, M. (2018). A Fuzzy Sliding Mode Controller for Planar 4-Cable Direct Driven Robot. Enfoque UTE, 9(4), 99–109.
Anson, M. (2015). Cable-driven parallel manipulators with base mobility: A planar case study (PhD Thesis). State University of New York at Buffalo.
Gallina, P., Rosati, G., & Rossi, A. (2001). 3-d.o.f. Wire Driven Planar Haptic Interface. Journal of Intelligent and Robotic Systems, 32(1), 23–36. https://doi.org/10.1023/A:1012095609866
Gallina, P., Rossi, A., & Williams II, R. L. (2001). Planar cable-direct-driven robots, part ii: Dynamics and control. En ASME. DECT2001 ASME Design Engineering Technical Conference. Pittsburgh: ASME Publisher (Vol. 2, pp. 1241–1247).
Heredia, J., & Mena, S. (2017). Implementación de un manipulador móvil para desarrollar tareas de seguimiento de trayectoria con un controlador tipo PID. Escuela Politécnica Nacional, Quito. Recuperado de http://bibdigital.epn.edu.ec/handle/15000/17238
Khakpour, H., Birglen, L., & Tahan, S. A. (2014). Synthesis of Differentially Driven Planar Cable Parallel Manipulators. IEEE Transactions on Robotics, 30(3), 619–630. https://doi.org/10.1109/TRO.2013.2295891
Khosravi, M. A., Taghirad, H. D., & Toosi, K. N. (2012). Dynamic Analysis and Control of Cable Driven Robots with Elastic Cables.
Khosravi, M., & Taghirad, H. (2013). Experimental Performance of Robust PID Controller on a Planar Cable Robot. En T. Bruckmann & A. Pott (Eds.), Cable-Driven Parallel Robots (pp. 337–352). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-31988-4_21
Pott, A., Mütherich, H., Kraus, W., Schmidt, V., Miermeister, P., Dietz, T., & Verl, A. (2013). Cable-driven parallel robots for industrial applications: The IPAnema system family. En IEEE ISR 2013 (pp. 1–6). https://doi.org/10.1109/ISR.2013.6695742
Williams II, R., & Gallina, P. (2003). Translational Planar Cable-Direct-Driven Robots. Journal of Intelligent and Robotic Systems, 37(1), 69–96. https://doi.org/10.1023/A:1023975507009
Zanotto, D., Rosati, G., Minto, S., & Rossi, A. (2014). Sophia-3: A Semiadaptive Cable-Driven Rehabilitation Device With a Tilting Working Plane. IEEE Transactions on Robotics, 30(4), 974–979. https://doi.org/10.1109/TRO.2014.2301532
Downloads
Published
Issue
Section
License
The authors retain all copyrights ©.
- The authors retain their trademark and patent rights, as well as rights to any process or procedure described in the article.
- The authors retain the right to share, copy, distribute, perform, and publicly communicate the article published in Enfoque UTE (for example, post it in an institutional repository or publish it in a book), provided that acknowledgment of its initial publication in Enfoque UTE is given.
- The authors retain the right to publish their work at a later date, to use the article or any part of it (for example, a compilation of their work, lecture notes, a thesis, or for a book), provided that they indicate the source of publication (authors of the work, journal, volume, issue, and date).