Estudio numérico mediante CFD en disipadores de calor para componentes electrónicos
DOI:
https://doi.org/10.29019/enfoqueute.1130Palabras clave:
Disipador de calor, CFD, temperatura, transferencia de calorResumen
En el presente estudio, se lleva a cabo una investigación numérica mediante CFD de ANSYS para observar la transferencia de calor y la disipación de calor, el método es por transferencia de calor por convección forzada, con un disipador moderno e innovador. En este estudio se observa una configuración de seis aletas centrales verticales de igual medida y tres aletas pequeñas de forma horizontal. Con la superficie inferior calentada, con esto se simula el rechazo de calor de dispositivos electrónicos como tarjetas de video en CPU’s. Las ecuaciones de Navier-Stokes para la dinámica de fluidos y el modelo de turbulencia Kappa-Épsilon basado en RNG (Renormalización) se establecen para este estudio. La temperatura en el aire que mueve hasta el disipador de calor aumenta entre 0.62 y 0.79 °C, para la temperatura en la base de 80 °C y 100 °C, respectivamente, esto se traduce que a mayor velocidad de flujo de aire, 20 m/s, el aire tiene la capacidad de calentarse más ya que su intercambio de calor es más fuerte, por lo tanto, el disipador de calor reduce su temperatura.
viaja hasta el disipador de calor aumenta entre 0,62 y 0,79°C, para la temperatura en la base de 80°C y 100°C, respectivamente, esto se traduce que a mayor velocidad de flujo de aire, 20m/s, el aire tiene la capacidad de calentarse más ya que su intercambio de calor es más fuerte, por lo tanto, el disipador de calor reduce su temperatura.
Descargas
Referencias
[1] M. Hajialibabaei, M. Z. Saghir, I. Dincer, and Y. Bicer, “Optimization of heat dissipation in novel design wavy channel heat sinks for better performance,” Energy, vol. 297, no. April, p. 131155, 2024.
[2] H. Kepekci and A. Asma, “Comparative Analysis of Heat Sink Performance Using Different Materials,” American Journal of Engineering Research (AJER), vol. 9, no. 4, pp. 204-210, 2020.
[3] A. Moradikazerouni, M. Afrand, J. Alsarraf, O. Mahian, S. Wongwises, and M. D. Tran, “Comparison of the effect of five different entrance channel shapes of a micro-channel heat sink in forced convection with application to cooling a supercomputer circuit board,” Applied Thermal Engineering, vol. 150, no. January, pp. 1078-1089, 2019.
[4] M. Zadhoush, A. Ahmadi Nadooshan, M. Afrand, and H. Ghafori, “Constructal optimization of longitudinal and latitudinal rectangular fins used for cooling a plate under free convection by the intersection of asymptotes method,” International Journal of Heat and Mass Transfer, vol. 112, pp. 441-453, 2017.
[5] K. Lampio and R. Karvinen, “Optimization of convectively cooled heat sinks,” Microelectronics Reliability, vol. 79, pp. 473-479, 2017.
[6] H. S. Sultan, K. B. Saleem, B. M. Alshammari, M. Turki, A. Aydi, and L. Kolsi, “Numerical investigation of natural convection from a horizontal heat sink with an array of rectangular fins,” Case Studies in Thermal Engineering, vol. 61, no. April, p. 104877, 2024.
[7] F. Z. Bakhti and M. Si-Ameur, “Elliptical pin fin heat sink: Passive cooling control,” International Journal of Heat and Technology, vol. 39, no. 5, pp. 1417–1429, 2021.
[8] Z. He, Q. Yu, J. Ye, F. Yan, and Y. Li, “Optimization of plate-fin heat exchanger performance for heat dissipation of thermoelectric cooler,” Case Studies in Thermal Engineering, vol. 53, no. July 2023, p. 103953, 2024.
[9] I. E. Ghandouri, A. E. Maakoul, S. Saadeddine, and M. Meziane, “Thermal performance of a corrugated heat dissipation fin design: A natural convection numerical analysis,” International Journal of Heat and Mass Transfer, vol. 180, p. 121763, 2021.
[10] A. Abbas and C. C. Wang, “Augmentation of natural convection heat sink via using displacement design,” International Journal of Heat and Mass Transfer, vol. 154, 2020.
[11] C. H. Huang and W. Y. Chen, “A natural convection horizontal straight- fin heat sink design problem to enhance heat dissipation performance,” International Journal of Thermal Sciences, vol. 176, no. January, p. 107540, 2022.
[12] Siddhartha, S. Rath, and S. K. Dash, “Thermal performance of a wavy annular finned horizontal cylinder in natural convection for electronic cooling application,” International Communications in Heat and Mass Transfer, vol. 128, no. October, p. 105623, 2021.
[13] A. Al-Damook, N. Kapur, J. L. Summers, and H. M. Thompson, “An experimental and computational investigation of thermal air flows through perforated pin heat sinks,” Applied Thermal Engineering, vol. 89, pp. 365–376, 2015.
[14] A. Tariq, K. Altaf, A. M. A. Rani, M. Baharom, and A. R. A. Aziz, “Study of heat transfer attributes of custom fins for Crank-Rocker engine block using ANSYS,” Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, vol. 62, no. 2, pp. 235-243, 2019.
[15] H. T. Dhaiban and M. A. Hussein, “The optimal design of heat sinks: A review,” Journal of Applied and Computational Mechanics, vol. 6, no. 4, pp. 1030-1043, 2020.
[16] Z. Mehjabeen, T. K. Saad, M. H. Siam, and M. R. Haque, “Numerical study of arrowhead, hexagonal, and concave shaped- elliptical perforated plate fin heatsinks to improve the hydrothermal performance factor,” International Journal of Thermal Sciences, vol. 207, no. June 2024, 2025.
[17] D. Ansari and C. Duwig, “A gyroid TPMS heat sink for electronic cooling,” Energy Conversion and Management, vol. 319, no. June, 2024.
[18] S. Al-Shehri and H. H. Saber, “Experimental investigation of using thermoelectric cooling for computer chips,” Journal of King Saud University - Engineering Sciences, vol. 32, no. 5, pp. 321-329, 2020.
[19] M. R. Haque, T. J. Hridi, and M. M. Haque, “CFD studies on thermal performance augmentation of heat sink using perforated twisted, and grooved pin fins,” International Journal of Thermal Sciences, vol. 182, no. August, p. 107832, 2022.
[20] M. R. Zohora, Fatema Tuj Haque and M. M. Haque, “Numerical investigation of the hydrothermal performance of novel pin-fin heat sinks with hyperbolic, wavy, and crinkle geometries and various perforations,” International Journal of Thermal Sciences, vol. 194, no. July, p. 108578, 2023.
[21] W. Al-Sallami, A. Al-Damook, and H. M. Thompson, “A numerical investigation of the thermal-hydraulic characteristics of perforated plate fin heat sinks,” International Journal of Thermal Sciences, vol. 121, no. 2017, pp. 266-277, 2017.
[22] F. Toapanta, W. Quitiaquez, and C. Tamay, “Numerical analysis by CFD for the forced boiling process with isobutane circulating through square tubes,” Revista Técnica energía”, vol. 19, no. 2, pp. 110-118, 2023.
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2025 Los Autores

Esta obra está bajo una licencia Creative Commons Reconocimiento 3.0 Unported.
Los autores retienen todos sus derechos (© copyright).
- Los autores retienen sus derechos de marca y patente, y también sobre cualquier proceso o procedimiento descrito en el artículo.
- Los autores retienen el derecho de compartir, copiar, distribuir, ejecutar y comunicar públicamente el artículo publicado en Enfoque UTE (por ejemplo, colocarlo en un repositorio institucional o publicarlo en un libro), siempre que se dé el reconocimiento de su publicación inicial en la revista Enfoque UTE.
- Los autores retienen el derecho a hacer una posterior publicación de su trabajo, de utilizar el artículo o cualquier parte de aquel (por ejemplo: una compilación de sus trabajos, notas para conferencias, tesis, o para un libro), siempre que indiquen la fuente de publicación (autores del trabajo, revista, volumen, número y fecha).