Análisis de las propiedades mecánicas del compuesto de matriz poliéster reforzado con fibra de vidrio 375 y cabuya aplicado a la industria automotriz
DOI:
https://doi.org/10.29019/enfoqueute.v8n3.163Palabras clave:
cabuya, esfuerzos, tracción, materiales híbridos, automotrizResumen
Los estudios de los materiales compuestos juegan un papel importante en aplicaciones de ingeniería, materiales, metalurgia y mecánica. Las fibras reforzadas con polímeros son ampliamente utilizadas en la industria automotriz e industria aeronáutica debido a sus beneficios como bajo costo, control de ruido, bajo peso y facilidad de procesamiento. El objetivo de esta investigación fue preparar un compuesto a base de fibra de vidrio 375 (FV) con adiciones de fibra natural de cabuya (FC) en estratificaciones de fibra natural corta de cabuya (FCO1-30%) y fibra larga del mismo (FL-30%). Los resultados muestran un mejor comportamiento mecánico a tracción en un 7,7% respecto al material comúnmente utilizado. Se observó que la fibra larga al 30% en un orden de capas, FV+FC+FV, es un potencial refuerzo del material hibrido alternativo para aplicaciones automotrices. Además, se evidenció una equilibrada organización de refuerzos, FV+FC, y adherencia micro estructural con la matriz de refuerzo polimérico (RP) mediante microscopía de barrido. Los resultados del esfuerzo a la tracción y la deformación axial de la mejor combinación del material compuesto, FL-30%, son validados a través del método de elementos finitos (MEF).
Descargas
Referencias
ASTM, D. (2008). Standard test method for tensile properties of polymer matrix composite materials. ASTM International, West Conshohocken, PA,. doi: 10.1520/D0638-08
ASTM, D. (2010). Standard Test Method for Impact Resistance of Flat, Rigid Plastic Specimens by Means of a Falling Dart (Tup or Falling Mass). ASTM International, West Conshohocken, PA,. doi: 10.1520/D5628-10
Belytschko, T., Liu, W. K., Moran, B., & Elkhodary, K. (2013). Nonlinear finite elements for continua and structures: John wiley & sons.
Bismarck, A., Baltazar-Y-Jiménez, A., & Sarikakis, K. (2006). Green composites as panacea? Socio-economic aspects of green materials. Environment, Development and Sustainability, 8(3), 445-463.
Bledzki, A. K., Mamun, A. A., Jaszkiewicz, A., & Erdmann, K. (2010). Polypropylene composites with enzyme modified abaca fibre. Composites Science and Technology, 70(5), 854-860.
Cao, Y., Shibata, S., & Fukumoto, I. (2006). Mechanical properties of biodegradable composites reinforced with bagasse fibre before and after alkali treatments. Composites Part A: Applied Science and Manufacturing, 37(3), 423-429.
Casanova, L. (2010). La inversión extranjera directa en América Latina y las multinacionales emergentes latinoamericanas. Boletín Elcano(128), 7.
Chiaberge, M. (2011). New Trends and Developments in Automotive Industry.
Chung, D. D. (2010). Composite materials: science and applications: Springer Science & Business Media.
Dieu, T. V., Phai, L. T., Ngoc, P. M., Tung, N. H., & Le Phuong, T. (2004). Study on preparation of polymer composites based on polypropylene reinforced by jute fibers. JSME International Journal Series A Solid Mechanics and Material Engineering, 47(4), 547-550.
Flanagan, D., & Belytschko, T. (1981). A uniform strain hexahedron and quadrilateral with orthogonal hourglass control. International journal for numerical methods in engineering, 17(5), 679-706.
Fowler, P. A., Hughes, J. M., & Elias, R. M. (2006). Biocomposites: technology, environmental credentials and market forces. Journal of the Science of Food and Agriculture, 86(12), 1781-1789.
Gladman, B. (2007). LS-Dyna Keyword Users’ Manual. Livermore Software Corporation California.
Hallal, A., Elmarakbi, A., Shaito, A., & El‐Hage, H. (2013). Overview of Composite Materials and their Automotive Applications. Advanced Composite Materials for Automotive Applications: Structural Integrity and Crashworthiness, 1-28.
Hull, D. (2003). Materiales compuestos (Reverté Ed. Primera ed.). Barcelona.
McWilliams, A. (2015). Lightweight Materials in Transportation Advanced Materials: BBC Research.
Pickering, K. L., Efendy, M. A., & Le, T. M. (2016). A review of recent developments in natural fibre composites and their mechanical performance. Composites Part A: Applied Science and Manufacturing, 83, 98-112.
Shaharuddin, S., & Matthews, Z. (1994). FL and Rawlings, RD, Composite Materials: Engineering and Science: Chapman & Hall, London.
Shibata, S., Cao, Y., & Fukumoto, I. (2005). Press forming of short natural fiber-reinforced biodegradable resin: Effects of fiber volume and length on flexural properties. Polymer testing, 24(8), 1005-1011.
Smith, W. F., Hashemi, J., Cázares, G. N., Caver, P. A. G., Avilés, L. C., & Velasco, J. A. B. (2006). Fundamentos de la ciencia e ingeniería de materiales: McGraw-Hill.
Publicado
Número
Sección
Licencia
Los autores retienen todos sus derechos (© copyright).
- Los autores retienen sus derechos de marca y patente, y también sobre cualquier proceso o procedimiento descrito en el artículo.
- Los autores retienen el derecho de compartir, copiar, distribuir, ejecutar y comunicar públicamente el artículo publicado en Enfoque UTE (por ejemplo, colocarlo en un repositorio institucional o publicarlo en un libro), siempre que se dé el reconocimiento de su publicación inicial en la revista Enfoque UTE.
- Los autores retienen el derecho a hacer una posterior publicación de su trabajo, de utilizar el artículo o cualquier parte de aquel (por ejemplo: una compilación de sus trabajos, notas para conferencias, tesis, o para un libro), siempre que indiquen la fuente de publicación (autores del trabajo, revista, volumen, número y fecha).