Análisis de las propiedades mecánicas del compuesto de matriz poliéster reforzado con fibra de vidrio 375 y cabuya aplicado a la industria automotriz

Autores/as

  • Juan G. Paredes Salinas Universidad Técnica de Ambato
  • Cristian F. Pérez Salinas Universidad Técnica de Ambato
  • Christian B. Castro Miniguano Universidad Técnica de Ambato

DOI:

https://doi.org/10.29019/enfoqueute.v8n3.163

Palabras clave:

cabuya, esfuerzos, tracción, materiales híbridos, automotriz

Resumen

Los estudios de los materiales compuestos juegan un papel importante en aplicaciones de ingeniería, materiales, metalurgia y mecánica. Las fibras reforzadas con polímeros son ampliamente utilizadas en la industria automotriz e industria aeronáutica debido a sus beneficios como bajo costo, control de ruido, bajo peso y facilidad de procesamiento. El objetivo de esta investigación fue preparar un compuesto a base de fibra de vidrio 375 (FV) con adiciones de fibra natural de cabuya (FC) en estratificaciones de fibra natural corta de cabuya (FCO1-30%) y fibra larga del mismo (FL-30%). Los resultados muestran un mejor comportamiento mecánico a tracción en un 7,7% respecto al material comúnmente utilizado. Se observó que la fibra larga al 30% en un orden de capas, FV+FC+FV, es un potencial refuerzo del material hibrido alternativo para aplicaciones automotrices. Además, se evidenció una equilibrada organización de refuerzos, FV+FC, y adherencia micro estructural con la matriz de refuerzo polimérico (RP) mediante microscopía de barrido. Los resultados del esfuerzo a la tracción y la deformación axial de la mejor combinación del material compuesto, FL-30%, son validados a través del método de elementos finitos (MEF).

Descargas

Los datos de descargas todavía no están disponibles.

Citas

ASTM, D. (2007). Standard Test Method for Flexural Properties of Polymer Matrix Composite Materials. ASTM International(West Conshohocken). doi: 10.1520/D7264_D7264M-07
ASTM, D. (2008). Standard test method for tensile properties of polymer matrix composite materials. ASTM International, West Conshohocken, PA,. doi: 10.1520/D0638-08
ASTM, D. (2010). Standard Test Method for Impact Resistance of Flat, Rigid Plastic Specimens by Means of a Falling Dart (Tup or Falling Mass). ASTM International, West Conshohocken, PA,. doi: 10.1520/D5628-10
Belytschko, T., Liu, W. K., Moran, B., & Elkhodary, K. (2013). Nonlinear finite elements for continua and structures: John wiley & sons.
Bismarck, A., Baltazar-Y-Jiménez, A., & Sarikakis, K. (2006). Green composites as panacea? Socio-economic aspects of green materials. Environment, Development and Sustainability, 8(3), 445-463.
Bledzki, A. K., Mamun, A. A., Jaszkiewicz, A., & Erdmann, K. (2010). Polypropylene composites with enzyme modified abaca fibre. Composites Science and Technology, 70(5), 854-860.
Cao, Y., Shibata, S., & Fukumoto, I. (2006). Mechanical properties of biodegradable composites reinforced with bagasse fibre before and after alkali treatments. Composites Part A: Applied Science and Manufacturing, 37(3), 423-429.
Casanova, L. (2010). La inversión extranjera directa en América Latina y las multinacionales emergentes latinoamericanas. Boletín Elcano(128), 7.
Chiaberge, M. (2011). New Trends and Developments in Automotive Industry.
Chung, D. D. (2010). Composite materials: science and applications: Springer Science & Business Media.
Dieu, T. V., Phai, L. T., Ngoc, P. M., Tung, N. H., & Le Phuong, T. (2004). Study on preparation of polymer composites based on polypropylene reinforced by jute fibers. JSME International Journal Series A Solid Mechanics and Material Engineering, 47(4), 547-550.
Flanagan, D., & Belytschko, T. (1981). A uniform strain hexahedron and quadrilateral with orthogonal hourglass control. International journal for numerical methods in engineering, 17(5), 679-706.
Fowler, P. A., Hughes, J. M., & Elias, R. M. (2006). Biocomposites: technology, environmental credentials and market forces. Journal of the Science of Food and Agriculture, 86(12), 1781-1789.
Gladman, B. (2007). LS-Dyna Keyword Users’ Manual. Livermore Software Corporation California.
Hallal, A., Elmarakbi, A., Shaito, A., & El‐Hage, H. (2013). Overview of Composite Materials and their Automotive Applications. Advanced Composite Materials for Automotive Applications: Structural Integrity and Crashworthiness, 1-28.
Hull, D. (2003). Materiales compuestos (Reverté Ed. Primera ed.). Barcelona.
McWilliams, A. (2015). Lightweight Materials in Transportation Advanced Materials: BBC Research.
Pickering, K. L., Efendy, M. A., & Le, T. M. (2016). A review of recent developments in natural fibre composites and their mechanical performance. Composites Part A: Applied Science and Manufacturing, 83, 98-112.
Shaharuddin, S., & Matthews, Z. (1994). FL and Rawlings, RD, Composite Materials: Engineering and Science: Chapman & Hall, London.
Shibata, S., Cao, Y., & Fukumoto, I. (2005). Press forming of short natural fiber-reinforced biodegradable resin: Effects of fiber volume and length on flexural properties. Polymer testing, 24(8), 1005-1011.
Smith, W. F., Hashemi, J., Cázares, G. N., Caver, P. A. G., Avilés, L. C., & Velasco, J. A. B. (2006). Fundamentos de la ciencia e ingeniería de materiales: McGraw-Hill.

Descargas

Publicado

2017-06-30

Cómo citar

Paredes Salinas, J. G., Pérez Salinas, C. F., & Castro Miniguano, C. B. (2017). Análisis de las propiedades mecánicas del compuesto de matriz poliéster reforzado con fibra de vidrio 375 y cabuya aplicado a la industria automotriz. Enfoque UTE, 8(3), pp. 1 – 15. https://doi.org/10.29019/enfoqueute.v8n3.163

Número

Sección

Misceláneos