Desalinizador solar de múltiples etapas para su aplicación en zonas costeras del Ecuador
DOI:
https://doi.org/10.29019/enfoqueute.781Palabras clave:
desalinización, destilador, múltiples etapas, colector solar, simulaciónResumen
Se ha desarrollado un desalinizador solar con recuperación de calor para su aplicación en zonas costeras del Ecuador con escasez de agua dulce. El aparato consta de una torre de destilación de 3 etapas conectada a un colector solar plano. La energía solar absorbida por el colector es transferida mediante circulación natural a la torre de destilación, donde en cada etapa se recupera el calor de condensación del agua para incrementar el destilado producido. El diseño modular del equipo permite variar la producción de agua, desde unos pocos litros hasta más de un metro cúbico al día. El prototipo tiene pocas partes móviles y puede ser armado y desarmado rápidamente, lo que facilita su operación y mantenimiento. La producción mensual promedio del desalinizador varía entre 4.3 y 5.8 kg/día (2.44 y 3.29 kg/m2). El desempeño del desalinizador fue analizado con un modelo matemático, cuya exactitud fue mejorada al evaluar experimentalmente los coeficientes de transferencia de calor por convección presentes en la torre de destilación. Se realizó una simulación en Matlab-Simulink que permite predecir las temperaturas, destilado generado y flujos de calor en la unidad. La simulación de un día completo de operación del destilador tuvo resultados muy satisfactorios, con una diferencia de únicamente el 7.7 % entre los datos teóricos y experimentales. La simulación también fue utilizada para analizar mejoras en el desempeño del equipo, determinándose que la producción del desalinizador podría incrementarse hasta en un 107 %.
Descargas
Citas
Abdullah, A. S., et al. (2020). Improving the trays solar still performance using reflectors and phase change material with nanoparticles. Journal of Energy Storage, 31: 101744. https://doi.org/https://doi.org/10.1016/j.est.2020.101744
Al-Mutaz, I. S., y Wazeer, I. (2014). Comparative performance evaluation of conventional multi-effect evaporation desalination processes. Applied Thermal Engineering, 73(1): 1194-1203. https://doi.org/https://doi.org/10.1016/j.applthermaleng.2014.09.025
Buckalew, J. O., James, M., Scott, L., y Reed, P. (1998). Water resources assessment of Ecuador. US Army Corp of Engineers, Mobile District and Topographic Engineering Center.
Cando, A. X. A., Sarzosa, W. Q., y Toapanta, L. F. (2020). CFD Analysis of a solar flat plate collector with different cross sections. Enfoque UTE, 11(2): 95-108. https://doi.org/https://doi.org/10.29019/enfoque.v11n2.601
Duffie, J. A., y Beckman, W. A. (2013). Solar engineering of thermal processes. John Wiley & Sons.
Dunkle, R. V. (1961). Solar water distillation: the roof type still and a multiple effect diffusion still, International Developments of Heat Transfer, ASME. In Proceedings of International Heat Transfer, University of Colorado, 8(5): 895
El-Dessouky, H. T., y Ettouney, H. M. (2002). Fundamentals of Salt Water Desalination. Elsevier Science.
Feilizadeh, M., et al. (2015). Year-round outdoor experiments on a multi-stage active solar still with different numbers of solar collectors. Applied Energy, 152: 39-46. https://doi.org/https://doi.org/10.1016/j.apenergy.2015.04.084
Kalogirou, S. A. (2014). Solar energy engineering: processes and systems (Second). Academic Press.
NASA Langley Research Center. (2020). POWER Data Access Viewer. NASA Langley Research Center. https://power.larc.nasa.gov/data-access-viewer/
Parsa, S. M., et al. (2020). First approach on nanofluid-based solar still in high altitude for water desalination and solar water disinfection (SODIS). Desalination, 491: 114592. https://doi.org/https://doi.org/10.1016/j.desal.2020.114592
Rahbar, N., y Esfahani, J. A. (2013). Productivity estimation of a single-slope solar still: Theoretical and numerical analysis. Energy, 49: 289-297. https://doi.org/https://doi.org/10.1016/j.energy.2012.10.023
Reddy, K. S., et al. (2012). Performance analysis of an evacuated multi-stage solar water desalination system. Desalination, 288: 80-92. https://doi.org/https://doi.org/10.1016/j.desal.2011.12.016
Reddy, K. S., & Sharon, H. (2016). Active multi-effect vertical solar still: Mathematical modeling, performance investigation and enviro-economic analyses. Desalination, 395: 99-120. https://doi.org/https://doi.org/10.1016/j.desal.2016.05.027
Sampathkumar, K., Arjunan, T. V, Pitchandi, P., y Senthilkumar, P. (2010). Active solar distillation. A detailed review. Renewable and Sustainable Energy Reviews, 14(6): 1503-1526. https://doi.org/https://doi.org/10.1016/j.rser.2010.01.023
Schwarzer, K., da Silva, E. V., Hoffschmidt, B., y Schwarzer, T. (2009). A new solar desalination system with heat recovery for decentralised drinking water production. Desalination, 248(1–3): 204-211. https://doi.org/https://doi.org/10.1016/j.desal.2008.05.056
Schwarzer, K., da Silva, M. E. V., y Schwarzer, T. (2011). Field results in Namibia and Brazil of the new solar desalination system for decentralised drinking water production. Desalination and Water Treatment, 31(1-3): 379-386. https://doi.org/https://doi.org/10.5004/dwt.2011.2339
Secretaría del Agua (SENAGUA). (2017). Boletín de la estadística sectorial del agua.
Soliman, H. S. (1976). Solar still coupled with a solar water heater. Mosul University, Mosul, Iraq, 43.
Tiwari, G. N., y Sahota, L. (2017). Advanced Solar-Distillation Systems: Basic Principles, Thermal Modeling and Its Application (First). Springer. https://doi.org/https://doi.org/10.1007/978-981-10-4672-8
Tiwari, G. N., y Tiwari, A. K. (2008). Solar distillation practice for water desalination systems. Anshan Pub.
Xue, Y., Du, X., Ge, Z., y Yang, L. (2018). Study on multi-effect distillation of seawater with low-grade heat utilization of thermal power generating unit. Applied Thermal Engineering, 141: 589-599. https://doi.org/https://doi.org/10.1016/j.applthermaleng.2018.05.129
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Los Autores
Esta obra está bajo una licencia Creative Commons Reconocimiento 3.0 Unported.
Los artículos e investigaciones publicadas por la Universidad UTE, se realizan en régimen de Acceso Abierto [Open Access] en formato electrónico. Esto significa que todo el contenido está disponible de forma gratuita sin costo para el usuario o su institución. Los usuarios pueden leer, descargar, copiar, distribuir, imprimir, buscar o enlazar los textos completos de los artículos, o usarlos para cualquier otro propósito legal, sin necesidad de pedir permiso previo al editor o al autor. Esto está de acuerdo con la definición de acceso abierto de la Iniciativa de Acceso Abierto de Budapest (BOAI). Al enviar un artículo a cualquiera de las revistas científicas de la Universidad UTE, el o los autores aceptan estas condiciones.
La UTE aplica la licencia Creative Commons Attribution (CC-BY) a los artículos de sus revistas científicas. En virtud de esta licencia de acceso abierto, como autor usted acuerda que cualquier persona puede reutilizar su artículo en su totalidad o en parte para cualquier propósito, de forma gratuita, incluso para fines comerciales. Cualquiera puede copiar, distribuir o reutilizar el contenido siempre y cuando el autor y la fuente original estén correctamente citados. Esto facilita la libertad de reutilización y también asegura que el contenido pueda ser extraído sin barreras para necesidades de investigación.
Esta obra está bajo una Creative Commons Attribution 3.0 International (CC BY 3.0).
Además, la Revista Enfoque UTE garantiza y declara que los autores conservan siempre todos los derechos de autor y todos los derechos de publicación sin restricciones [© Los Autores]. El reconocimiento (BY) permite cualquier explotación de la obra, incluyendo una finalidad comercial, así como la creación de obras derivadas, la distribución de las cuales también está permitida sin ninguna restricción.